【題目】某公司從1999年的年產(chǎn)值100萬元,增加到10年后2009年的500萬元,如果每年產(chǎn)值增長率相同,則每年的平均增長率是多少?(ln(1x)x,lg20.3ln102.30)

【答案】16.1%.

【解析】試題分析:設每年的年產(chǎn)值增長率是 ,由題意可得: 化為 ,即可得出 ,解出即可得出

試題解析:設每年年增長率為x

100(1x)10500,即(1x)105,

兩邊取常用對數(shù),得

10·lg(1x)lg5,

lg(1x) (lg10lg2).

lg(1x),

ln(1x)lg(1x)·ln10.

ln(1x)×ln10×2.300.16116.1%.

又由已知條件:ln(1x)xx16.1%.

故每年的平均增長率約為16.1%.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D

的中點,AC⊥平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求三棱錐C-DB1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位,點的極坐標為,為圓心,4為半徑;又直線的極坐標方程為。

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關(guān)系.若相交,則求直線被圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是563

1)求展開式中的所有有理項;

2)求展開式中系數(shù)絕對值最大的項.

3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)3ax22bxc,abc0,f(0)>0f(1)>0,證明a>0,并利用二分法證明方程f(x)0在區(qū)間[0,1]內(nèi)有兩個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017長沙模擬】如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(1)求證:AD⊥C1E;

(2)當異面直線AC,C1E所成的角為60°時,求三棱錐C1A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關(guān)?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.

參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列5個命題中正確命題的個數(shù)是( )

①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;

④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;

⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

A.2 B.3

C.4 D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人對東北一種松樹的生長進行了研究,收集了其高度h()與生長時間t()的相關(guān)數(shù)據(jù),選擇hmtbh=loga(t+1)來刻畫ht的關(guān)系,你認為哪個符合?并預測第8年的松樹高度.

t()

1

2

3

4

5

6

h()

0.6

1

1.3

1.5

1.6

1.7

查看答案和解析>>

同步練習冊答案