15.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶(hù)家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬(wàn)元)8.28.610.011.311.9
支出y(萬(wàn)元)6.27.58.08.59.8
根據(jù)上表可得回歸直線(xiàn)方程$\stackrel{∧}{y}$=a+0.76x,據(jù)此估計(jì),若該社區(qū)一戶(hù)家庭年支出為11.8萬(wàn)元,則該家庭的年收入為15萬(wàn)元.

分析 由題意可得$\overline{x}$,$\overline{y}$,可得回歸方程,把$\stackrel{∧}{y}$=11.8代入方程求得x值即可.

解答 解:由題意可得$\overline{x}$=$\frac{1}{5}$(8.2+8.6+10.0+11.3+11.9)=10,
$\overline{y}$=$\frac{1}{5}$(6.2+7.5+8.0+8.5+9.8)=8,
代入回歸方程可得a=8-0.76×10=0.4,
∴回歸方程為$\stackrel{∧}{y}$=0.76x+0.4,
把$\stackrel{∧}{y}$=11.8代入方程可得0.76×x+0.4=11.8,∴x=15.
故答案為15.

點(diǎn)評(píng) 本題考查線(xiàn)性回歸方程,涉及平均值的計(jì)算,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線(xiàn)y2=2px(p>0)過(guò)點(diǎn)(4,4),它的焦點(diǎn)F,傾斜角為$\frac{π}{3}$的直線(xiàn)l過(guò)點(diǎn)F且與拋物線(xiàn)兩交點(diǎn)為A,B,點(diǎn)A在第一象限內(nèi).
(1)求拋物線(xiàn)和直線(xiàn)l的方程;
(2)求|AF|:|BF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在三角形△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且A=60°,B=45°,c=20,則a=30$\sqrt{2}$-10$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=x-1,則不等式xf(x)≥0的解集為(-∞,-1]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中對(duì)應(yīng)的元素是(  )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(I)求函數(shù)f(x)的解析式
(II)現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}y-x≥0\\ x+y-4≥0\\ x-3y+12≥0\end{array}\right.$,則z=2x+y-1的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a+3)x-5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={x|x>-1},下列關(guān)系式中成立的為( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

同步練習(xí)冊(cè)答案