【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標(biāo)準(zhǔn)如下:4小時內(nèi)(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(含24小時)收費30元;超過24小時,按前述標(biāo)準(zhǔn)重新計費.上述標(biāo)準(zhǔn)不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:
完成上述列聯(lián)表,并判斷能否有的把握認(rèn)為“停車是否超過6小時”與性別有關(guān)?
(2)(i)X表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求X的概率分布列及期望:
(ii)現(xiàn)隨機抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求P()的概率.
參考公式:,其中
【答案】(1)沒有超過的把握認(rèn)為“停車是否超過6小時”與性別有關(guān);(2)(i)分布列見解析,,(ii)
【解析】
(1)用分層抽樣的方法計算不超過6小時得車輛有40輛,結(jié)合列聯(lián)表數(shù)據(jù)完善表格,并代入公式,計算出的值,與獨立性檢驗判斷表比較作出判斷.
(2)(i)分析停車一次所交費用變量的可能值為5,8,11,15,19,30,并根據(jù)“以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率”求 出 對 應(yīng) 概 率;列 出 分 布 列,求 期 望..
(2) (ii)服從二項分布,用二項分布的概率公式計算.
(1)列聯(lián)表如下:
男 | 女 | 合計 | |
不超過6小時 | 10 | 30 | 40 |
6小時以上 | 20 | 40 | 60 |
合計 | 30 | 70 | 100 |
根據(jù)上表數(shù)據(jù)代入公式可得
所以沒有超過的把握認(rèn)為“停車是否超過6小時”與性別有關(guān);
(2)(i)由題意知,X的可能值為5,8,11,15,19,30,則
,,,,
,
所以X的分布列為
X | 5 | 8 | 11 | 15 | 19 | 30 |
(ii)由題意得
所以
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三棱柱的底面邊長為2, 是側(cè)棱的中點.
(1)證明:平面平面;
(2)若平面與平面所成銳角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)2020年全面建設(shè)小康社會,某地進行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設(shè)備可以獨立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.
根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x﹣12|≤1為一級品,1<|x﹣12|≤2為二級品,|x﹣12|>2為三級品.
(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進行檢驗.已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗費用為50元.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產(chǎn)品中隨機抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進行一一檢驗?請說明理由;
(Ⅲ)為加大升級力度,廠家需增購設(shè)備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應(yīng)選購哪種設(shè)備?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉(zhuǎn)動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標(biāo)系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標(biāo),并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當(dāng),|GH|,依次成等差數(shù)列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為p(每次抽獎互不影響,且p的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)X(元)的分布列并求其數(shù)學(xué)期望.
附:參考公式和數(shù)據(jù):,.
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了名學(xué)生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運動的興趣,隨機從該校一年級學(xué)生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,P為直線:上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C
(1)求曲線C的方程:
(2)過點的直線與曲線C交于A,B兩點,點D(異于A,B)在C上,直線,分別與x軸交于點M,N,且,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com