在數(shù)列{an}中,a1=1,{an}的前n項和Sn滿足2Snan+1.
(1)求數(shù)列{an}的通項公式;
(2)若存在n∈N*,使得λ,求實數(shù)λ的最大值.

(1) an (2) 3

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列的前項和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當時,數(shù)列滿足,,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列{an}滿足an+1an=9·2n-1n∈N*.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,若不等式Snkan-2對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12,數(shù)列{bn}的前n項和是Sn,且Sn+bn=1.
(1)求數(shù)列{an}的通項公式.
(2)求證:數(shù)列{bn}是等比數(shù)列.
(3)記cn=,{cn}的前n項和為Tn,若Tn<對一切n∈N*都成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}和{bn}滿足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}和{bn}滿足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列項和為,且滿足,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列的公比為,的前項和.
(1)若,求的值;
(2)若,有無最值?并說明理由;
(3)設(shè),若首項都是正整數(shù),滿足不等式:,且對于任意正整數(shù)成立,問:這樣的數(shù)列有幾個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)在之間插入個數(shù)連同按原順序組成一個公差為)的等差數(shù)列.
①設(shè),求數(shù)列的前;
②在數(shù)列中是否存在三項(其中成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案