【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿足,則的最小值為
A. B. 3 C. 4 D. 12
【答案】D
【解析】
根據(jù)題意,設(shè)該等比數(shù)列的首項(xiàng)為a1,第二項(xiàng)為a2,公比為q,由S4﹣2S2=3得S4﹣2S2=(q2﹣1)(a1+a2)=3,進(jìn)而可得q>1,且a1+a2= ,又由S6﹣S4=q4×(a1+a2)=q4×=3[(q2﹣1)++2],由基本不等式的性質(zhì)分析可得答案.
根據(jù)題意,設(shè)該等比數(shù)列的首項(xiàng)為a1,第二項(xiàng)為a2,公比為q,
若S4﹣2S2=3,則有S4﹣2S2=a1+a2+a3+a4-2(a1+a2)=(a3+a4)﹣(a1+a2)=(q2﹣1)(a1+a2)=3,
又由數(shù)列{an}為正項(xiàng)的等比數(shù)列,則q>1,則有a1+a2=,
則S6﹣S4=(a5+a6)=q4×(a1+a2)=q4×=3[(q2﹣1)++2]≥6+3×2 =12;
當(dāng)且僅當(dāng)q2=2,即q=時(shí)等號(hào)成立,則S6﹣S4的最小值為12;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定 :一次購物總額
1)如果不超過500元,那么不予優(yōu)惠;
2)如果超過500元但不超過1000元,那么超過500元部分按標(biāo)價(jià)給予8折優(yōu)惠;
3)如果超過1000元,那么其中超過500不超過1000元給予8折優(yōu)惠,超過1000元部分給予5折優(yōu)惠.設(shè)一次購物標(biāo)價(jià)總額為x元,優(yōu)惠后實(shí)際付款額為f(x)元.
(1)試寫出f(x)的解析式;
(2)如果某顧客實(shí)際付款額為1600元,在這次優(yōu)惠活動(dòng)中他實(shí)際付款額比購物標(biāo)價(jià)總額少支出多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱則函數(shù)的圖象( )
A. 關(guān)于直線對(duì)稱 B. 關(guān)于直線對(duì)稱
C. 關(guān)于點(diǎn)對(duì)稱 D. 關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為,點(diǎn),點(diǎn)在線段的中垂線上.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),直線與的傾斜角分別為,且,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
若是函數(shù)的極值點(diǎn),求實(shí)數(shù)a的值;
若對(duì)任意的為自然對(duì)數(shù)的底數(shù),都有成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點(diǎn)E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點(diǎn).
(1)求證:AC⊥PE;
(2)求證:PF∥平面BNM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,已知,
,則下列結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com