(本小題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙相切,為切點(diǎn),為割線,
,相交于點(diǎn),上一點(diǎn),且·.

(1)求證:;
(2)求證:·=·.

見解析。

解析試題分析:證明:(1)∵,∴
是公共角,∴相似于,
,。  …………………… 5分
(2)相似,
··
相交于點(diǎn),·
··.     ……………………… 10分
考點(diǎn):本題主要考查平面幾何選講,三角形及圓的問題。
點(diǎn)評:本題以直線與圓的位置關(guān)系為載體,全面考查了平面幾何選講問題,中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:(1)△ABC≌△DCB   (2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.

(1)延長MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點(diǎn)c為o 上不同于A、B的一點(diǎn),AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結(jié)BD、CD.

(I )求證:BD平分
(II)求證:AH.BH=AE.HC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講
如圖,四邊形是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半圓交于點(diǎn),延長

(1)求證:的中點(diǎn);
(2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,AB、CD是圓的兩條平行弦,BE//AC,BE交CD于E、交圓于F,過A點(diǎn)的切線交DC的延長線于P,PC=ED=1,PA=2.
(I)求AC的長;
(II)求證:BE=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC。求證:AM=7BM。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(12分)
如圖,△ABC內(nèi)接于⊙O,過點(diǎn)A的直線交⊙O于點(diǎn)P,交BC的延長線于點(diǎn)D,
且AB2=AP·AD

(1)求證:AB=AC;
(2)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點(diǎn),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

參數(shù)方程 (為參數(shù))化為普通方程是(   )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案