一個正三棱柱有一個內切球(球與三棱柱的兩個底面和三個側面都相切)和一個外接球(球經(jīng)過三棱柱的六個頂點),則此內切球、外接球與正三棱柱三個幾何體的表面積之比為1:______:______.
設正三棱柱底面正三角形的邊長為a,其內切球的半徑為R
當球外切于正三棱柱時,球的半徑R等于正三棱柱的底面正三角形的重心到對邊的距離即R=
3
3
a
,到相對棱的距離是
2
3
3
a

又正三棱柱的高是其內切球半徑的2倍,故正三棱柱的高為
2
3
3
a
,
 球外接正三棱柱時,球的球心是正三棱柱高的中點,且球的球心與正三棱柱兩個底面正三角形構成兩個正三棱錐,頂點在底面上的投影恰好是底面三角形的重心到頂點的距離
2
3
3
a
,棱錐的高為
3
3
a

故正三棱錐外接球的半徑滿足 R22=(
2
3
3
a)
2
+(
3
3
a)
2
=
5
3
a2
,
三棱柱的表面積為:
3
4
a2+3a× 
2
3
3
a
=
5
3
2
a2

∴內切球、外接球與正三棱柱三個幾何體的表面積之比4(π
1
3
a2
):(4π
5
3
a2
):
5
3
2
a2
=R2:R22=1:5:
9
3


故答案為:5;
9
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個正三棱柱有一個內切球(球與三棱柱的兩個底面和三個側面都相切)和一個外接球(球經(jīng)過三棱柱的六個頂點),則此內切球、外接球與正三棱柱三個幾何體的表面積之比為1:
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

一個正三棱柱有一個內切球(球與三棱柱的兩個底面和三個側面都相切)和一個外接球(球經(jīng)過三棱柱的六個頂點),則此內切球、外接球與正三棱柱三個幾何體的表面積之比為1:________:________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個正三棱柱有一個內切球(球與三棱柱的兩個底面和三個側面都相切)和一個外接球(球經(jīng)過三棱柱的六個頂點),則此內切球、外接球與正三棱柱三個幾何體的表面積之比為1:______:______.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年吉林省松原市長嶺四中高二(上)期末數(shù)學試卷(解析版) 題型:填空題

一個正三棱柱有一個內切球(球與三棱柱的兩個底面和三個側面都相切)和一個外接球(球經(jīng)過三棱柱的六個頂點),則此內切球、外接球與正三棱柱三個幾何體的表面積之比為1:       

查看答案和解析>>

同步練習冊答案