(理科)(13分)在如圖所示的空間幾何體中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在的平分線上.
(1)求證:DE//平面ABC;(2)求二面角E—BC—A的余弦;
(3)求多面體ABCDE的體積.
(理科)解:(1)由題意知, 都是邊長為2的等邊三角形,
取AC中點O,連接BO,DO,則
平面ACD平面ABC
平面ABC,作EF平面ABC,
那么EF//DO,根據(jù)題意,點F落在BO上,
,易求得
所以四邊形DEFO是平行四邊形,DE//OF;
平面ABC,平面ABC,
平面ABC…………4分
(2)作FGBC,垂足為G,連接FG;
平面ABC,根據(jù)三垂線定理可知,EGBC
就是二面角E—BC—A的平面角
即二面角E—BC—A的余弦值為…………8分
(3)平面ACD平面ABC,OBAC
平面ACD;又
平面DAC,三棱錐E—DAC的體積
又三棱錐E—ABC的體積
多面體DE—ABC的體積為V=V1-V2=…………13分
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省徐州市豐縣修遠雙語學(xué)校2011-2012學(xué)年高二上學(xué)期第二次月考數(shù)學(xué)試題 題型:044
(理科做)
在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M是AB的中點.建立適當(dāng)?shù)目臻g直角坐標系,解決下列問題:
(1)求證:CM⊥EM;
(2)求CM與平面CDE所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二第二次月考數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)(理科做)在如圖所示的幾何體中,平面,平面,,,是的中點.建立適當(dāng)?shù)目臻g直角坐標系,解決下列問題:
⑴求證:;
⑵求與平面所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com