【題目】已知圓M的方程為,直線l的方程為
,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線
,
,切點(diǎn)為A,B.
(1)若,試求點(diǎn)P的坐標(biāo);
(2)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo);
(3)設(shè)線段的中點(diǎn)為N,求點(diǎn)N的軌跡方程.
【答案】(1)或
(2)證明見解析;定點(diǎn)
和
(3)
【解析】
(1)設(shè),由題可知
,代入兩點(diǎn)間的距離公式可得
,求解
可得點(diǎn)
的坐標(biāo);
(2)的中點(diǎn)
,因?yàn)?/span>PA是圓M的切線,進(jìn)而可知經(jīng)過A,P,M三點(diǎn)的圓是以Q為圓心,以MQ為半徑的圓,進(jìn)而得到該圓的方程,根據(jù)其方程是關(guān)于m的恒等式,進(jìn)而可求得x和y,得到結(jié)果;
(3)結(jié)合(2)將兩圓方程相減可得直線的方程,且得直線
過定點(diǎn)
,由幾何性質(zhì)得
,即點(diǎn)N在以
為直徑的圓上,進(jìn)而可得結(jié)果.
(1)設(shè),因?yàn)?/span>
是圓M的切線,
,
所以,
,
所以,解之得
,
,
故所求點(diǎn)P的坐標(biāo)為或
.
(2)的中點(diǎn)
,
因?yàn)?/span>是圓M的切線,所以經(jīng)過A,P,M三點(diǎn)的圓是以Q為圓心,以
為半徑的圓,
故其方程為:,
化簡得:,
此式是關(guān)于m的恒等式,故解得
或
.
所以經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn)和
.
(3)由
可得:
,即
,
由可得
過定點(diǎn)
.
因?yàn)?/span>N為圓M的弦的中點(diǎn),所以
,即
,
故點(diǎn)N在以為直徑的圓上,
點(diǎn)N的軌跡方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于實(shí)數(shù)x的一元二次方程.
Ⅰ
若a是從區(qū)間
中任取的一個整數(shù),b是從區(qū)間
中任取的一個整數(shù),求上述方程有實(shí)根的概率.
Ⅱ
若a是從區(qū)間
任取的一個實(shí)數(shù),b是從區(qū)間
任取的一個實(shí)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黑板上寫有,1,2,…,666,這666個正整數(shù),第一步劃去最前面的八個數(shù):1,2,…,8,,并在666后面寫上1,2,…,8的和36;第二步再劃去最前面的八個數(shù):9,10,…,16,并在最后面寫上9,10,…,16的和100;如此繼續(xù)下去(即每一步劃去最前面的八個數(shù),并在最后寫上劃去的八個數(shù)的和).
(1)問:經(jīng)過多少步后,黑板上只剩下一個數(shù)?
(2)當(dāng)黑板上只剩下一個數(shù)時,求出在黑板上出現(xiàn)過的所有數(shù)的和(如果一個數(shù)多次出現(xiàn)需重復(fù)計算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,平面
底面
,
為
中點(diǎn),
是棱
上的點(diǎn),
.
(Ⅰ)若點(diǎn)是棱
的中點(diǎn),求證:
平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若二面角為
,設(shè)
,試確定
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)集,其中
,
,定義向量集
.若對于任意
,使得
,則稱
具有性質(zhì)
.例如
具有性質(zhì)
.
()若
,且
具有性質(zhì)
,求
的值.
()若
具有性質(zhì)
,求證:
,且當(dāng)
時,
.
()若
具有性質(zhì)
,且
,
(
為常數(shù)),求有窮數(shù)列
,
,
,
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時下,租車已經(jīng)成為新一代的流行詞,租車自駕游也慢慢流行起來,某小車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是,不超過2天按照300元計算;超過兩天的部分每天收費(fèi)標(biāo)準(zhǔn)為100元(不足1天的部分按1天計算).有甲乙兩人相互獨(dú)立來該租車點(diǎn)租車自駕游(各租一車一次),設(shè)甲、乙不超過2天還車的概率分別為;2天以上且不超過3天還車的概率分別
;兩人租車時間都不會超過4天.
(1)求甲所付租車費(fèi)用大于乙所付租車費(fèi)用的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求
的分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
處取極值,求
在點(diǎn)
處的切線方程;
(2)當(dāng)時,若
有唯一的零點(diǎn)
,求
注表示不超過
的最大整數(shù),如
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日至10月24日,中國共產(chǎn)黨第十九次全國代表大會簡稱黨的“十九大”
在北京召開
一段時間后,某單位就“十九大”精神的領(lǐng)會程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個問題,每個問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績都在
內(nèi),按成績分成5組:第1組
,第2組
,第3組
,第4組
,第5組
,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對“十九大”精神作深入學(xué)習(xí).
求這100人的平均得分
同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表
;
求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);
若甲、乙、丙都被選取對“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對“十九大”精神的領(lǐng)會程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com