【題目】總體由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取4個(gè)個(gè)體,選取方法從隨機(jī)數(shù)表的第1行第4列數(shù)由左到右由上到下開(kāi)始讀取,則選出來(lái)的第4個(gè)個(gè)體的編號(hào)為( )
第1行 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98
第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81
A.10B.01C.09D.06
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:22,23,25,26,31,30;若B樣本數(shù)據(jù)恰好是A樣本中每個(gè)數(shù)據(jù)都減去10后所得的數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征相同的是( )
A.方差B.平均數(shù)C.眾數(shù)D.中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn),,且它的圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓關(guān)于直線對(duì)稱(chēng)的圓的方程。
(Ⅲ)若點(diǎn)為圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如表:
年齡(單位:歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 3 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān):
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(2)若從年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查.記選中的4人中贊成“使用微信交流”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù)如下:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),直線.設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)點(diǎn),根據(jù)下列條件分別求出直線的方程:
(1)直線的傾斜角為;
(2)與直線x-2y+1=0垂直;
(3)在軸、軸上的截距之和等于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, .
(1)求證:數(shù)列是等比數(shù)列;
(2)若是數(shù)列的前項(xiàng)和,求滿(mǎn)足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中, 是的中點(diǎn), , .將沿
折起,使點(diǎn)與圖中點(diǎn)重合.
(Ⅰ)求證:;
(Ⅱ)當(dāng)三棱錐的體積取最大時(shí),求二面角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試問(wèn)在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出定義在上的兩個(gè)函數(shù),.
(1)若在處取最值.求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com