【題目】垃圾分類,是指按一定規(guī)定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉(zhuǎn)變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用.2019625日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實現(xiàn)公共機構生活垃圾分類全覆蓋.某機構欲組建一個有關垃圾分類相關事宜的項目組,對各個地區(qū)垃圾分類的處理模式進行相關報道.該機構從600名員工中進行篩選,篩選方法:每位員工測試,,三項工作,3項測試中至少2項測試不合格的員工,將被認定為暫定,有且只有一項測試不合格的員工將再測試,兩項,如果這兩項中有1項以上(含1項)測試不合格,將也被認定為暫定,每位員工測試,三項工作相互獨立,每一項測試不合格的概率均為

1)記某位員工被認定為暫定的概率為,求

2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.

【答案】1;(2)不會超過預算.

【解析】

1)利用互斥事件的概率加法計算公式和n次獨立重復實驗的概率計算公式進行求解即可;

2)設每位員工測試的費用為元,則可能的取值為,利用n次獨立重復實驗的概率計算公式和離散型隨機變量的數(shù)學期望公式求出數(shù)學期望的表達式,通過構造函數(shù),利用導數(shù)判斷函數(shù)的單調(diào)性求最值即可.

1)由題意知,每位員工首輪測試被認定為暫定的概率為,

每位員工再次測試被認定為暫定的概率為,

綜上可知,每位員工被認定為暫定的概率為

+

,

2)設每位員工測試的費用為元,則可能的取值為,

由題意知,,,

所以隨機變量的數(shù)學期望為

(元),,

,則

,

所以當時,;當時,;

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

所以,即(元),

所以此方案的最高費用為(萬元),

綜上可知,若以此方案實施不會超過預算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】試求所有由互異正奇數(shù)構成的三元集{a,b,c},使其滿足:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的左右焦點分別為,,為坐標原點.為曲線右支上的點,點外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點,過其準線與軸的交點作直線,

1)若直線與拋物線相切于點,則=_____________.

2)設,若直線與拋物線交于點,且,則=_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;

2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數(shù)為,寫出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查各校學生體質(zhì)健康達標情況,某機構M采用分層抽樣的方法從校抽取了名學生進行體育測試,成績按照以下區(qū)間分為七組:[30,40),[40,50),[50,60),[60,70)[70,80)[80,90)[90,100],并得到如下頻率分布直方圖.根據(jù)規(guī)定,測試成績低于60分為體質(zhì)不達標.已知本次測試中不達標學生共有20人.

(1)求的值;

(2)現(xiàn)從校全體同學中隨機抽取2人,以頻率作為概率,記表示成績不低于90分的人數(shù),求的分布列及數(shù)學期望;

(3)另一機構N也對該校學生做同樣的體質(zhì)達標測試,并用簡單隨機抽樣方法抽取了100名學生,經(jīng)測試有20名學生成績低于60分.計算兩家機構測試成績的不達標率,你認為用哪一個值作為對該校學生體質(zhì)不達標率的估計較為合理,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,四邊形是菱形,,平面平面,.

1)求證:;

2)若,求三棱錐和三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為正三角形,且,,將沿翻折.

1)若點的射影在上,求的長;

2)若點的射影在中,且直線與平面所成角的正弦值為,求的長.

查看答案和解析>>

同步練習冊答案