分析 (1)求出數列的首項,利用an=Sn-Sn-1,求解數列的通項公式.
(2)由k(Sn+1)≥2n-9,整理得k≥$\frac{2n-9}{2^n}$,令${b_n}=\frac{2n-9}{2^n}$,判斷數列的單調性,求出最大項,然后求解實數k的取值范圍.
解答 解:(1)令n=1,S1=2a1-1=a1,解得a1=1.…(2分)
由Sn=2an-1,有Sn-1=2an-1-1,
兩式相減得an=2an-2an-1,
化簡得an=2an-1(n≥2),
∴數列{an}是以首項為1,公比為2 的等比數列,
∴數列{an}的通項公式${a_n}={2^{n-1}}$.…(6分)
(2)由k(Sn+1)≥2n-9,整理得k≥$\frac{2n-9}{2^n}$,
令${b_n}=\frac{2n-9}{2^n}$,則${b_{n+1}}-{b_n}=\frac{2n-7}{{{2^{n+1}}}}-\frac{2n-9}{2^n}=\frac{11-2n}{{{2^{n+1}}}}$,…(8分)
n=1,2,3,4,5時,${b_{n+1}}-{b_n}=\frac{11-2n}{{{2^{n+1}}}}>0$,
∴b1<b2<b3<b4<b5.…(10分)
n=6,7,8,…時,${b_{n+1}}-{b_n}=\frac{11-2n}{{{2^{n+1}}}}<0$,即b6>b7>b8>…
∵b5=$\frac{1}{32}$<${b_6}=\frac{3}{64}$,
∴bn的最大值是${b_6}=\frac{3}{64}$.
∴實數k的取值范圍是$[\frac{3}{64},\;\;+∞)$.…(12分)
點評 本題考查數列的遞推關系式以及數列與函數相結合,考查構造法以及函數的單調性的應用,考查計算能力.
科目:高中數學 來源: 題型:解答題
喜歡冷凍 | 不喜歡冷凍 | 合計 | |
女學生 | 60 | 20 | 80 |
男學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com