已知曲線C:(θ為參數(shù),0≤θ<2π),
(1)將曲線C化為普通方程;
(2)求出該曲線在以直角坐標系原點為極點,x軸非負半軸為極軸的極坐標系下的極坐標方程.
【答案】分析:(1)欲將曲線C化為普通方程,只須要消去參數(shù)θ即可,利用三角函數(shù)中的平方關(guān)系即可消去參數(shù)θ.
(2)欲求極坐標系下的極坐標方程,利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得直角坐標系即可.
解答:解:(1)∵曲線C:(θ為參數(shù),0≤θ<2π),
,兩式平方相加得:
x2+y2-2x-2y=0.即為曲線C化為普通方程.
(2)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換得:
ρ2-2ρcosθ-2ρsinθ=0,
即:ρ=2cosθ+2sinθ,即為極坐標系下的極坐標方程.
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線C:為參數(shù)).

(1)將C的參數(shù)方程化為普通方程;

(2)若把C上各點的坐標經(jīng)過伸縮變換后得到曲線,求曲線上任意一點到兩坐標軸距離之積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年海南省高三上學(xué)期教學(xué)質(zhì)量監(jiān)測考試文科數(shù)學(xué) 題型:解答題

本小題滿分10分)選修4—4:坐標系與參數(shù)方程.

     已知曲線C (為參數(shù)), C為參數(shù))。

(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;

(2)若C上的點P對應(yīng)的參數(shù)為,Q為C上的動點,求中點到直線

  ,(為參數(shù))距離的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:數(shù)學(xué)公式(θ為參數(shù)),若A、B是曲線C上關(guān)于坐標軸不對稱的任意兩點.
(1)求AB的垂直平分線l在x軸上截距的取值范圍;
(2)設(shè)過點M(1,0)的直線l是曲線C上A,B兩點連線的垂直平分線,求l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(選做題)已知曲線C:數(shù)學(xué)公式(φ為參數(shù)).
(Ⅰ)將C的方程化為普通方程;
(Ⅱ)若點P(x,y)是曲線C上的動點,求2x+y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案