【題目】如下圖所示,對(duì)應(yīng)關(guān)系f是從A到B的映射的是(
A.
B.
C.
D.

【答案】D
【解析】解:如果一個(gè)集合中的任何元素在另一個(gè)集合中都有唯一確定的一個(gè)元素和它對(duì)應(yīng),則此對(duì)應(yīng)構(gòu)成映射.
故D構(gòu)成映射,
A、不能構(gòu)成映射,因?yàn)榍斑叺募现械脑?與9在后一個(gè)集合中有兩個(gè)元素和它對(duì)應(yīng),故此對(duì)應(yīng)不是映射.
B與C中的元素0在后一個(gè)集合中沒(méi)有元素和它對(duì)應(yīng),故B與C中的對(duì)應(yīng)不是映射.
所以答案是:D
【考點(diǎn)精析】利用映射的相關(guān)定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來(lái)說(shuō)的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于平面向量,有下列四個(gè)命題:
①若
=(1,1), =(2,x),若 平行,則x=2.
③非零向量 滿足| |=| |=| |,則 的夾角為60°.
④點(diǎn)A(1,3),B(4,﹣1),與向量 同方向的單位向量為( ).
其中真命題的序號(hào)為 . (寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ,求tanx的值;
(2)若 的夾角為 ,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)據(jù)x1 , x2 , x3 , x4 , x5的方差為3,則數(shù)據(jù)2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 的夾角為60°.
(1)若 , 都是單位向量,求|2 + |;
(2)若| |=2, + 與2 ﹣5 垂足,求| |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為, 為橢圓的右頂點(diǎn), 分別為橢圓的上、下頂點(diǎn).線段的延長(zhǎng)線與線段交于點(diǎn),與橢圓交于點(diǎn).(1)若橢圓的離心率為, 的面積為12,求橢圓的方程;(2)設(shè) ,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立, (Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對(duì)任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某河道中過(guò)度滋長(zhǎng)一種藻類(lèi),環(huán)保部門(mén)決定投入生物凈化劑凈化水體. 因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長(zhǎng)度 (單位:m),凈化劑凈化水體的寬度 (單位:m)是時(shí)間t(單位:分鐘)的函數(shù): (由單位時(shí)間投放的凈化劑數(shù)量確定,設(shè)為常數(shù),且).

(1)試寫(xiě)出投放凈化劑的第t分鐘內(nèi)凈化水體面積的表達(dá)式;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案