【題目】已知拋物線,直線E交于A、B兩點,且,其中O為原點.

1)求拋物線E的方程;

2)點C坐標為,記直線CA、CB的斜率分別為,證明: 為定值.

【答案】1;(2)證明過程詳見解析.

【解析】試題分析:(1)將直線與拋物線聯(lián)立,消去y,得到關于x的方程,得到兩根之和、兩根之積,設出AB的坐標,代入到中,化簡表達式,再將上述兩根之和兩根之積代入得到p,從而求出拋物線標準方程.(2)先利用點AB,C的坐標求出直線CACB的斜率,再根據(jù)拋物線方程輪化參數(shù)y1,y2,得到kx的關系式,將上一問中的兩根之和兩根之積代入,化簡表達式得到常數(shù)即可

試題解析:()將代入 ,得

其中

, ,則,

由已知,,.所以拋物線的方程

)由()知,

,同理,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)將函數(shù)的圖象向左平移個單位后,所得圖象對應的函數(shù)為.若關于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,點(n,Sn)(nN*)在y=x2的函數(shù)圖象上.

(1)求數(shù)列{an}的通項公式;

(2)若bn=(-1)n+1anan+1,求數(shù)列{bn}的前100項和T100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都為50%,現(xiàn)采用隨機模擬的方法估計該運動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個隨機數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989

據(jù)此估計,該運動員四次投籃恰有兩次命中的概率為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點EAD的中點,,平面ABCD,且

(1)求證:;

(2)線段PC上是否存在一點F,使二面角的余弦值是?若存在,請找出點F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,為棱的三等分點(靠近A點).

求證:(1平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)若,函數(shù)在區(qū)間上為增函數(shù),求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)求過點,斜率是直線的斜率的的直線的縱截距;

2)直線經(jīng)過點且與直線垂直,求直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點是的極值點,其中是自然對數(shù)的底數(shù).(極值點是指函數(shù)取得極值時對應的自變量的值)

(1)求關于的函數(shù)關系式;

(2)當時,若函數(shù)的最小值為,證明: .

查看答案和解析>>

同步練習冊答案