平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿足其中、

(Ⅰ)求點(diǎn)C的軌跡方程;

(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線交于兩點(diǎn)MN,且以MN為直徑的圓過原點(diǎn),求證:為定值.

 

【答案】

【解析】

解:(Ⅰ)設(shè)

即點(diǎn)C的軌跡方程為:                  

(II) 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中O為坐標(biāo)原點(diǎn),P(3,4),將向量
OP
繞原點(diǎn)順時(shí)針方向旋轉(zhuǎn)
π
3
,并將其長(zhǎng)度伸長(zhǎng)為原來的2倍的向量
OQ
,則點(diǎn)Q的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四種說法:
(1)方程y2-x2=0表示兩條直線:y+x=0,y-x=0;
(2)平面直角坐標(biāo)系中拋物線y2=-x的開口向左且準(zhǔn)線方程為x=-
1
2
;
(3)平面直角坐標(biāo)系中傾斜角為0°的直線只有一條即x軸;
(4)雙曲線x2-y2=1與y2-x2=4有相同的漸近線.
其中正確說法的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),給定兩點(diǎn),點(diǎn)滿足    ,其中,且.   (1)求點(diǎn)的軌跡方程;(2)設(shè)點(diǎn)的軌跡與雙曲線交于兩點(diǎn),且以為直徑的圓過原點(diǎn),求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實(shí)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省大慶實(shí)驗(yàn)中學(xué)高一下學(xué)期開學(xué)考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)
在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),三點(diǎn)滿足
(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求的值;
(Ⅲ)已知,
的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省溫州市搖籃杯高一數(shù)學(xué)競(jìng)賽試題 題型:填空題

在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),設(shè)向量

,若,

則點(diǎn)所有可能的位置所構(gòu)成的區(qū)域面積是     

 

查看答案和解析>>

同步練習(xí)冊(cè)答案