精英家教網 > 高中數學 > 題目詳情

【題目】對于命題P:存在一個常數M,使得不等式 對任意正數a,b恒成立.
(1)試給出這個常數M的值;
(2)在(1)所得結論的條件下證明命題P;
(3)對于上述命題,某同學正確地猜想了命題Q:“存在一個常數M,使得不等式 對任意正數a,b,c恒成立.”觀察命題P與命題Q的規(guī)律,請猜想與正數a,b,c,d相關的命題.

【答案】
(1)解:根據題意,由于 對任意正數a,b恒成立,

令a=b得:


(2)解:要證明 ,

先證明

∵a>0,b>0,要證上式,只要證3a(2b+a)+3b(2a+b)≤2(2a+b)(2b+a),

即證a2+b2≥2ab即證(a﹣b)2≥0,這顯然成立.

再證明

∵a>0,b>0,要證上式,只要證3a(2a+b)+3b(2b+a)≥2(a+2b)(b+2a),

即證a2+b2≥2ab即證(a﹣b)2≥0,這顯然成立.


(3)解:猜想結論:存在一個常數M,使得不等式 對任意正數a,b,c,d恒成立
【解析】(1)根據題意,利用特殊值法,令a=b可得, ,分析即可得M的值;(2)由分析法的思路:先證明 ,再類比可以證明 ,綜合即可得證明;(3)利用類比推理的思路,分析可得答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為(
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1將根式化為分式指數冪的形式;

2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數與方差;

(2)根據圖和上面算得的結果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某某車站在春運期間為了改進服務,隨機抽樣調查了100名旅客從開始在購票窗口排隊到購到車票所用的時間t(以下簡稱購票用時,單位:min).下面是這次抽樣的頻率分布表和頻率分布直方圖,解答下列問題:

分組

頻數

頻率

一組

0≤t<5

0

0

二組

5≤t<10

10

三組

10≤t<15

10

0.10

四組

15≤t<20

五組

20≤t<25

30

0.30

合計

100

1.00

(1)這次抽樣的樣本容量是多少?

(2)在表中填寫缺失的數據并補全頻率分布直方圖.

(3)旅客購票用時的平均數可能落在哪一個小組?

(4)若每增加一個購票窗口可使平均購票用時縮短5 min,要使平均購票用時不超過10 min,那么你估計最少要增加幾個窗口?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為奇函數 為偶函數,

(1)求的解析式及定義域;

(2)若關于的不等式恒成立,求實數的取值范圍

(3)如果函數,若函數有兩個零點,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在已知函數,(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(1)求的解析式;

(2)當時,求的值域;

(3)求上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的函數f(x)= 是奇函數.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數,若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數)恒成立.求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 在區(qū)間 上有最大值4和最小值1,

(Ⅰ)求 的值;
(Ⅱ)若不等式 上恒成立,求實數 的取值范圍.

查看答案和解析>>

同步練習冊答案