【題目】已知函數(shù)
(1)若x≥0時,f(x)≤0,求λ的最小值;
(2)設數(shù)列{an}的通項an=1+

【答案】
(1)解:由已知,f(0)=0,

f′(x)= =

∴f′(0)=0

欲使x≥0時,f(x)≤0恒成立,則f(x)在(0,+∞)上必為減函數(shù),即在(0,+∞)上f′(x)<0恒成立,

當λ≤0時,f′(x)>0在(0,+∞)上恒成立,為增函數(shù),故不合題意,

若0<λ< 時,由f′(x)>0解得x< ,則當0<x< ,f′(x)>0,所以當0<x< 時,f(x)>0,此時不合題意,

若λ≥ ,則當x>0時,f′(x)<0恒成立,此時f(x)在(0,+∞)上必為減函數(shù),所以當x>0時,f(x)<0

恒成立,

綜上,符合題意的λ的取值范圍是λ≥ ,即λ的最小值為


(2)解:令λ= ,由(I)知,當x>0時,f(x)<0,即

取x= ,則

于是a2n﹣an+ = + +…+ +

=

=

=

= =ln2n﹣lnn=ln2

所以


【解析】(1)由于已知函數(shù)的最大值是0,故可先求出函數(shù)的導數(shù),研究其單調(diào)性,確定出函數(shù)的最大值,利用最大值小于等于0求出參數(shù)λ的取值范圍,即可求得其最小值;(2)根據(jù)(1)的證明,可取λ= ,由于x>0時,f(x)<0得出 ,考察發(fā)現(xiàn),若取x= ,則可得出 ,以此為依據(jù),利用放縮法,即可得到結(jié)論
【考點精析】關(guān)于本題考查的函數(shù)的最大(小)值與導數(shù)和數(shù)列的前n項和,需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( )
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為 ,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為.

(1)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)設函數(shù),且在區(qū)間內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以, , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分數(shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分數(shù)為, , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在的學生中應抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)要完成下列3項抽樣調(diào)查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學校校務公開方面的意見,擬抽取一個容量為20的樣本.

③渦陽縣某中學報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結(jié)束后,為了聽取意見,需要請28名聽眾進行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的圖象過點。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;

(3)若函數(shù), ,則是否存在實數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: =1經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).

(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若 = ,求直線l的斜率k.

查看答案和解析>>

同步練習冊答案