【題目】在平面直角坐標(biāo)系中,對于點、直線,我們稱為點到直線的方向距離.

1)設(shè)橢圓上的任意一點到直線,的方向距離分別為,求的取值范圍.

2)設(shè)點到直線的方向距離分別為、,試問是否存在實數(shù),對任意的都有成立?若存在,求出的值;不存在,說明理由.

3)已知直線和橢圓,設(shè)橢圓的兩個焦點,到直線的方向距離分別為滿足,且直線軸的交點為、與軸的交點為,試比較的長與的大小.

【答案】(1)(2)存在實數(shù)(3)

【解析】

1)由題意、,于是,又,即可求的取值范圍.

2)由題意,,于是,可得對任意的都成立,即可得出結(jié)論;

3)確定,,,,即可比較的長與的大小.

1)由點在橢圓上,所以

由題意,于是

,即

2)假設(shè)存在實數(shù),滿足題設(shè),

由題意,,

于是

對任意的都成立

只要即可,所以

故存在實數(shù),,對任意的都有成立.

3)設(shè),的坐標(biāo)分別為,于是

、于是

,

所以

綜上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,當(dāng)時,恒有;

1)求的表達(dá)式;

2)設(shè)不等式,的解集為,且,求實數(shù)的取值范圍;

3)若方程的解集為,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?

2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右支上的一點P作一直線l與兩漸近線交于A、B兩點,其中P的中點;

1)求雙曲線的漸近線方程;

2)當(dāng)P坐標(biāo)為時,求直線l的方程;

3)求證:是一個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,若是正整數(shù),且,則稱D-數(shù)列”.

(1) 舉出一個前五項均不為零的D-數(shù)列”(只要求依次寫出該數(shù)列的前五項);

(2) D-數(shù)列中,,,數(shù)列滿足,,寫出數(shù)列的通項公式,并分別判斷當(dāng)時,的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);

(3) 證明: 設(shè)D-數(shù)列中的最大項為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列項和為

(1)若首項,且對于任意的正整數(shù)均有,(其中為正實常數(shù)),試求出數(shù)列的通項公式.

(2)若數(shù)列是等比數(shù)列,公比為,首項為,為給定的正實數(shù),滿足:①,且②對任意的正整數(shù),均有;試求函數(shù)的最大值(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),函數(shù)

1)若函數(shù)是偶函數(shù),求實數(shù)的值;

2)若,求函數(shù)的最小值;

3)對于函數(shù),在定義域內(nèi)給定區(qū)間,如果存在,滿足,則稱函數(shù)是區(qū)間上的平均值函數(shù),是它的一個均值點.如函數(shù)上的平均值函數(shù),就是它的均值點.現(xiàn)有函數(shù)是區(qū)間上的平均值函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+|x+1|aR),gx)=|2x1|+2.

1)若a1,證明:不等式fxgx)對任意的xR成立;

2)若對任意的mR,都有tR,使得fm)=gt)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動點到定點與定直線的距離之和為4.

1)求點的軌跡方程,并畫出方程的曲線草圖;

2)記(1)得到的軌跡為曲線,問曲線上關(guān)于點)對稱的不同點有幾對?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案