【題目】函數(shù)的圖象過點,且相鄰兩個最高點與最低點的距離為

1)求函數(shù)的解析式和單調(diào)增區(qū)間;

2)若將函數(shù)圖象上所有的點向左平移個單位長度,再將所得圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,得到函數(shù)的圖象,求上的值域.

【答案】1;;(2

【解析】

1)根據(jù)相鄰兩個最高點和最低點的距離,建立方程,求出,利用已知點,求出,可得函數(shù)的解析式,利用正弦函數(shù)的單調(diào)增區(qū)間,可得結(jié)論;(2)根據(jù)三角函數(shù)圖象變換規(guī)則求出的解析式,根據(jù)角的范圍,利用正弦函數(shù)的性質(zhì)即可得出結(jié)論.

1)相鄰兩個最高點和最低點的距離為,可得,解得,

在函數(shù)圖象上,

,得,

的單調(diào)增區(qū)間為

2向左平移個單位長度得

圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,

當(dāng)時,,

,

上的值域為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若存在極值,求實數(shù)a的取值范圍;

2)設(shè),設(shè)是定義在上的函數(shù).

)證明:上為單調(diào)遞增函數(shù)(的導(dǎo)函數(shù));

)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱臺中,,平面

1)證明;

2)若的中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承綠水青山就是金山銀山的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市50%的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

評估得分

評定等級

不合格

合格

良好

優(yōu)秀

獎勵(萬元)

20

40

80

1)環(huán)保部門對企業(yè)抽查評估完成后,隨機抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

評估得分

頻率

0.04

0.10

0.20

0.12

其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;

2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進行技術(shù)改造,由于技術(shù)水平問題,被評定為合格”“良好優(yōu)秀的概率分別為,,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當(dāng)年因改造而增加的利潤為萬元,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

評估得分

評定等級

不合格

合格

良好

優(yōu)秀

獎勵(萬元)

環(huán)保部門對企業(yè)評估完成后,隨機抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

評估得分

頻率

其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是.

1)現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取個,若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;

2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的每條棱的長度都相等,,分別是棱的中點,是棱上一點,且平面.

1)證明:平面.

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上單調(diào),且函數(shù)的圖象關(guān)于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )

A. 300B. 100C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)當(dāng)時,求曲線在點處的切線方程;

2當(dāng)時,求在區(qū)間上的最大值和最小值;

3)當(dāng)時,若方程在區(qū)間上有唯一解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)在所給的坐標(biāo)紙上作出函數(shù)的圖像(不要求寫出作圖過程);

2)令, 求函數(shù)的定義域及不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案