【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點(diǎn)M,N分別在棱FD,ED.

1)若平面MAC,設(shè),求的值;

2)若,平面AEN平面EDC所成的銳二面角為,求BE的長(zhǎng).

【答案】122

【解析】

1)連接,,設(shè),可得∥平面,進(jìn)而可得,由中位線的性質(zhì)可得答案;

2)如圖建立空間直角坐標(biāo)系,設(shè),求出平面和平面的法向量,利用空間向量的夾角公式列方程求解.

1)解:連接,,設(shè),

因?yàn)樗倪呅?/span>為菱形,所以的中點(diǎn),

連接,因?yàn)?/span>∥平面,且平面平面,

所以

因?yàn)?/span>的中點(diǎn),所以的中點(diǎn),

2,又四邊形ABCD為菱形,

則四邊形ABCD為正方形,

,

又因?yàn)?/span>平面,可如圖建立空間直角坐標(biāo)系,

,,

設(shè),則,

因?yàn)?/span>,所以,

所以,

設(shè)平面的法向量為,

,

,取,

設(shè)平面的法向量為,

,取,

因?yàn)槠矫?/span>與平面 所成的銳二面角為

所以,

解得,即的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的右準(zhǔn)線方程為,右頂點(diǎn)為

求橢圓C的方程;

若M,N是橢圓C上不同于A的兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn).

如圖1,若為等腰直角三角形且直角頂點(diǎn)P在x軸上方,求直線MN的方程;

如圖2所示,點(diǎn)Q是線段NA的中點(diǎn),若的角平分線與x軸垂直,求直線AM的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點(diǎn).

若直線經(jīng)過點(diǎn)且與直線垂直,求直線的方程;

若直線經(jīng)過點(diǎn)且坐標(biāo)原點(diǎn)到直線的距離等于3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計(jì)圖已知利潤(rùn)為收入與支出的差,即利潤(rùn)收入一支出,則下列說法正確的是  

A. 利潤(rùn)最高的月份是2月份,且2月份的利潤(rùn)為40萬元

B. 利潤(rùn)最低的月份是5月份,且5月份的利潤(rùn)為10萬元

C. 收入最少的月份的利潤(rùn)也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓E的方程為 (a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足BM2MA,直線OM的斜率為.

(1)E的離心率e;

(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次摸取獎(jiǎng)票的活動(dòng)中,已知中獎(jiǎng)的概率為,若票倉(cāng)中有足夠多的票則下列說法正確的是  

A. 若只摸取一張票,則中獎(jiǎng)的概率為

B. 若只摸取一張票,則中獎(jiǎng)的概率為

C. 100個(gè)人按先后順序每人摸取1張票則一定有2人中獎(jiǎng)

D. 100個(gè)人按先后順序每人摸取1張票,則第一個(gè)摸票的人中獎(jiǎng)概率最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,平面平面 , 的中點(diǎn).

(1)證明:

(2)若是棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案