如圖,已知直線l1:x+y-1=0,現(xiàn)將直線l1向上平移到直線l2的位置,若l2、l1和坐標軸圍成的梯形面積為4,求l2的方程.

直線l2的方程是x+y-3=0


解析:

設(shè)l2的方程為y=-x+b(b>1),

則圖中A(1,0),D(0,1),B(b,0),C(0,b).

∴|AD|=,|BC|=.

梯形的高h就是A點到直線l2的距離,

.

由梯形面積公式,得,

b2=9,b=±3.但b>1,∴b=3.

從而得到直線l2的方程是x+y-3=0

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點P(3,-2).
(Ⅰ)求圓心M在l1上且與直線l2相切于點P的圓⊙的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線l1分別與直線l2、圓⊙依次相交于A、B、C三點,利用代數(shù)法驗證:|AP|2=|AB|•|AC|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
(1)求m與a的值;
(2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點P(3,-2).求有圓心在l1上且與直線l2相切于點P的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l1∥l2,點A是l1,l2之間的定點,點A到l1,l2之間的距離分別為3和2,點B是l2上的一動點,作AC⊥AB,且AC與l1交于點C,則△ABC的面積的最小值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l1∥l2,點A是l1,l2上兩直線之間的動點,且到l1距離為4,到l2距離為3,若
AC
AB
=0,AC
與直線l2交于點C,則△ABC面積的最小值為( 。

查看答案和解析>>

同步練習冊答案