【題目】正三棱錐,為中點(diǎn), ,,過(guò)的平面截三棱錐的外接球所得截面的面積范圍為( )
A.B.
C.D.
【答案】D
【解析】
根據(jù)題中數(shù)據(jù),結(jié)合正棱錐的結(jié)構(gòu)特征,得到兩兩垂直,可將正三棱錐看作正方體的一角,設(shè)正方體的體對(duì)角線的中點(diǎn)為,得到點(diǎn)是正三棱錐外接球的球心,記外接球半徑為,過(guò)球心的截面圓面積最大;再求出,根據(jù)球的結(jié)構(gòu)特征可得,當(dāng)垂直于過(guò)的截面時(shí),截面圓面積最小,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.
因?yàn)檎忮F,,,
所以,即,同理,,
因此正三棱錐可看作正方體的一角,如圖,
記正方體的體對(duì)角線的中點(diǎn)為,由正方體結(jié)構(gòu)特征可得,點(diǎn)即是正方體的外接球球心,
所以點(diǎn)也是正三棱錐外接球的球心,記外接球半徑為,
則,
因?yàn)榍虻淖畲蠼孛鎴A為過(guò)球心的圓,
所以過(guò)的平面截三棱錐的外接球所得截面的面積最大為;
又為中點(diǎn),由正方體結(jié)構(gòu)特征可得;
由球的結(jié)構(gòu)特征可知,當(dāng)垂直于過(guò)的截面時(shí),截面圓半徑最小為,
所以.
因此,過(guò)的平面截三棱錐的外接球所得截面的面積范圍為.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)國(guó)際象棋棋盤(由8×8個(gè)方格組成),其中有一個(gè)小方格因破損而被剪去(破損位置不確定).“L”形骨牌由三個(gè)相鄰的小方格組成,如圖所示.現(xiàn)要將這個(gè)破損的棋盤剪成數(shù)個(gè)“L”形骨牌,則( 。
A.至多能剪成19塊“L”形骨牌
B.至多能剪成20塊“L”形骨牌
C.最多能剪成21塊“L”形骨牌
D.前三個(gè)答案都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個(gè),甲、乙、丙三位同學(xué)依次選一個(gè)作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個(gè)吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有( )
A. 50種B. 60種C. 70種D. 90種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)已知函數(shù)在上為增函數(shù),且,若在上至少存在一個(gè)實(shí)數(shù),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( 。
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①的圖象關(guān)于點(diǎn)對(duì)稱②的最大值為
③在區(qū)間上單調(diào)遞增④是周期函數(shù)且最小正周期為
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),g(x)=|xlnx﹣ax2|,a.
(1)討論f(x)的單調(diào)性;
(2)若g(x)在區(qū)間(1,e)有極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無(wú)數(shù)條
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com