【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個頂點,個面的中心,此外在立方體的對角線的處也有個碳原子,如圖所示(綠色球),碳原子都以共價鍵結(jié)合,原子排列的基本規(guī)律是每一個碳原子的周圍都有個按照正四面體分布的碳原子.設(shè)金剛石晶胞的棱長為,則正四面體的棱長為__________;正四面體的外接球的體積是__________

【答案】

【解析】

依題意可知,為正四面體的中心,,設(shè)利用勾股定理即可解得,從而可得正四面體的外接球的半徑,進(jìn)而可求出體積.

依題意可知,為正四面體的中心,如圖:

連接,延長交平面于點,則為△的中心,

所以設(shè),

因為,所以,

,得,

,解得,

所以正四面體的棱長為.

依題意可知,正四面體的外接球的圓心為,半徑為,

所以正四面體的外接球的體積是.

故答案為:;.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,將其左、右焦點和短軸的兩個端點順次連接得到一個面積為的正方形.

1)求橢圓的方程;

2)直線與橢圓交于、兩點(均不在軸上),點,若直線、、的斜率成等比數(shù)列,且的面積為為坐標(biāo)原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個()一組進(jìn)行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進(jìn)行檢驗,如此,每一組產(chǎn)品只需檢驗一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為

1的分布列及其期望;

2)(i)試說明,當(dāng)越大時,該方案越合理,即所需平均檢驗次數(shù)越少;

ii)當(dāng)時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是(

A.病人在51312時的體溫是

B.病人體溫在5140時到6時下降最快

C.從體溫上看,這個病人的病情在逐漸好轉(zhuǎn)

D.病人體溫在51518時開始逐漸穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有3個零點

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有正確結(jié)論的編號是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在上任意一點處的切線,若過右焦點的直線交橢圓兩點,已知在點處切線相交于.

(Ⅰ)求點的軌跡方程;

(Ⅱ)①若過點且與直線垂直的直線(斜率存在且不為零)交橢圓兩點,證明為定值.

②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,廠家將一批產(chǎn)品發(fā)給商家時,商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗,以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗,求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗,只有 件都合格時才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地為鼓勵群眾參與全民讀書活動,增加參與讀書的趣味性.主辦方設(shè)計這樣一個小游戲:參與者拋擲一枚質(zhì)地均勻的骰子(正方體,六個面上分別標(biāo)注1,2,34,56六個數(shù)字).若朝上的點數(shù)為偶數(shù).則繼續(xù)拋擲一次.若朝上的點數(shù)為奇數(shù),則停止游戲,照這樣的規(guī)則進(jìn)行,最多允許拋擲3.每位參與者只能參加一次游戲.

1)求游戲結(jié)束時朝上點數(shù)之和為5的概率;

2)參與者可以選擇兩種方案:方案一:游戲結(jié)束時,若朝上的點數(shù)之和為偶數(shù),獎勵3本不同的暢銷書;若朝上的點數(shù)之和為奇數(shù),獎勵1本暢銷書.方案二:游戲結(jié)束時,最后一次朝上的點數(shù)為偶數(shù),獎勵5本不同的暢銷書,否則,無獎勵.試分析哪一種方案能使游戲參與者獲得更多暢銷書獎勵?并說明判斷的理由.

查看答案和解析>>

同步練習(xí)冊答案