已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

(1);(2)上的最大值為;(3)對任意給定的正實數(shù),曲線上總存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在y軸上.

解析試題分析:(1)求實數(shù)的值,由函數(shù),由圖像過坐標原點,得,且根據(jù)函數(shù)在點處的切線的斜率是,由導(dǎo)數(shù)幾何意義可得,建立方程組,可確定實數(shù)的值,進而可確定函數(shù)的解析式;(2)求在區(qū)間的最大值,因為,由于是分段函數(shù),可分段求最大值,最后確定最大值,當(dāng)時,,求導(dǎo)得,,令,可得上的最大值為,當(dāng)時,.對討論,確定函數(shù)的單調(diào)性,即可求得結(jié)論;(3)這是探索性命題,可假設(shè)曲線上存在兩點滿足題設(shè)要求,則點只能在軸兩側(cè).設(shè)的坐標,由此入手能得到對任意給定的正實數(shù),曲線上存在兩點使得是以為直角頂點的直角三角形,且此三角形斜邊中點在軸上.
試題解析:(1)當(dāng)時, (1分)
依題意,得,解得.     (3分)
(2)由(1)知,
①當(dāng)     (4分)
當(dāng)變化時的變化情況如下表:

<noscript id="dxjc5"><progress id="dxjc5"></progress></noscript><label id="dxjc5"><ol id="dxjc5"></ol></label>
<source id="dxjc5"></source>



    0





    0
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)f(x)=x2 (x≠0,a∈R).
    (1)判斷函數(shù)f(x)的奇偶性;
    (2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
    (1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
    (2)求f(x)的單調(diào)區(qū)間.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)f(x)=ax3x2cxd(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
    (1)求a,c,d的值;
    (2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)f(x)=ln x-1.
    (1)求函數(shù)f(x)的單調(diào)區(qū)間;
    (2)設(shè)m∈R,對任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實數(shù)m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知f(x)=exax-1.
    (1)求f(x)的單調(diào)增區(qū)間;
    (2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)處存在極值.
    (1)求實數(shù)的值;
    (2)函數(shù)的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數(shù)的取值范圍;
    (3)當(dāng)時,討論關(guān)于的方程的實根個數(shù).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)f(x)=(ax2bxc)exf(0)=1,f(1)=0.
    (1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實數(shù)a的取值范圍;
    (2)當(dāng)a=0時,是否存在實數(shù)m使不等式2f(x)+4xexmx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù).
    (Ⅰ)若,且對于任意恒成立,試確定實數(shù)的取值范圍;
    (Ⅱ)設(shè)函數(shù),
    求證:

    查看答案和解析>>

    同步練習(xí)冊答案