(本小題12分) 將圓O: 上各點的縱坐標變?yōu)樵瓉淼囊话?(橫坐標不變), 得到曲線、拋物線的焦點是直線y=x-1與x軸的交點.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:① 過的焦點;②與交于不同兩
,,且滿足?若存在,求出直線的方程; 若不存在,說明
理由.

(1) 的方程為:, 的方程為:。
(2)

解析試題分析:(1)設(shè)點, 點M的坐標為,由題意可知得到關(guān)系式。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,聯(lián)立方程組,結(jié)合韋達定理和向量數(shù)量積得到。
解:(1)設(shè)點, 點M的坐標為,由題意可知
.
所以, 的方程為的方程為:
綜上,的方程為:的方程為:。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,兩交點坐標為,
消去,得


,②

將①②代入③得,解得
所以假設(shè)成立,即存在直線滿足條件,且的方程為
考點:本題主要考查了直線與橢圓的位置關(guān)系的運用,以及圖像的變換,以及向量的數(shù)量積來表示垂直關(guān)系的運用。
點評:解決該試題的關(guān)鍵是能利用圖像變換準確得到曲線的方程然后利用向量的數(shù)量積來求解得到參數(shù)的值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
中心在原點,長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標準方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線,焦點為,頂點為,點在拋物線上移動,的中點,的中點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
在直角坐標系中,點到兩點,的距離之和等于,設(shè)點的軌跡為
(1)求曲線的方程;
(2)過點作兩條互相垂直的直線分別與曲線交于
①以線段為直徑的圓過能否過坐標原點,若能求出此時的值,若不能說明理由;
②求四邊形面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓G:的右焦點F為,G上的點到點F的最大距離為,斜率為1的直線與橢圓G交與、兩點,以AB為底邊作等腰三角形,頂點為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點,求此雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)直線與雙曲線相交于兩點,
(1)求的取值范圍
(2)當(dāng)為何值時,以為直徑的圓過坐標原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知拋物線的頂點為坐標原點,焦點在軸上. 且經(jīng)過點,
(1)求拋物線的方程;
(2)若動直線過點,交拋物線兩點,是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(,1),O為坐標原點。

(Ⅰ)求橢圓E的標準方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊答案