在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長(zhǎng)度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:,
(1)求曲線C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1和C2上的任意一點(diǎn),求的最小值.

(1) ;(2)

解析
試題分析:(1)把代入曲線C2是極坐標(biāo)方程中,即可得到曲線C2的直角坐標(biāo)方程;
(2)由已知可知P),,由兩點(diǎn)間的距離公式求出的表達(dá)式,再根據(jù)二次函數(shù)的性質(zhì),求出的最小值,然后可得min-.
試題解析: (1),       2分

.         4分
(2)設(shè)P),
       6分
時(shí),,       8分
.        10分
考點(diǎn):1.極坐標(biāo)方程和直角坐標(biāo)方程的互化;2.曲線與曲線間的位置關(guān)系以及二次函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線的極坐標(biāo)方程為,圓M的參數(shù)方程為。求:(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓M上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線上.
(1)求a的值及直線的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P,Q都在曲線Cθ為參數(shù))上,且這兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為θαθ=2α(0<α<2π),設(shè)PQ的中點(diǎn)M與定點(diǎn)A(1,0)間的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面的公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.
(1)求圓O和直線l的直角坐標(biāo)方程.
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為( t為參數(shù),0≤).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線C的形狀;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn)(1,0),求直線被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的極坐標(biāo)方程為ρsin(θ-)=6,圓C的參數(shù)方程為(θ為參數(shù)),求直線l被圓C截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案