已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍.
(1);(2).

試題分析:本題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值、不等式等基礎(chǔ)知識,考查函數(shù)思想,考查綜合分析和解決問題的能力.第一問,因為函數(shù)上有極值,所以極值點的橫坐標需落在內(nèi),對求導(dǎo),令判斷出函數(shù)的單調(diào)區(qū)間,決定出極值點所在位置,得到極值點的橫坐標,讓落在區(qū)間內(nèi),列出不等式;第二問,將已知條件先轉(zhuǎn)化為,下面主要任務(wù)是求函數(shù)的最小值,設(shè)出新函數(shù),對它求導(dǎo),判斷出函數(shù)的單調(diào)性,確定當有最小值,即,所以.
試題解析:(Ⅰ)因為,,則,
時,,當時,.
所以上單調(diào)遞增,在上單調(diào)遞減,
所以函數(shù)處取得極大值.
因為函數(shù)在區(qū)間(其中)上存在極值,
所以 解得
(Ⅱ)不等式即為 記
所以
,則
,
上單調(diào)遞增,
,從而,
上也單調(diào)遞增,
所以,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

。
(Ⅰ)求的極值點;
(Ⅱ)當時,若方程上有兩個實數(shù)解,求實數(shù)t的取值范圍;
(Ⅲ)證明:當時,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在實數(shù)集R上定義運算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)若,在的曲線上是否存在兩點,使得過這兩點的切線互相垂直?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像在點處的切線方程為.
(I)求實數(shù)的值;
(Ⅱ)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)),其中
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)當時,求函數(shù)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費用為W.

(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中是實數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且有兩個極值點,求的取值范圍.
(其中是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點,是函數(shù)圖象上不同于的一點.有如下結(jié)論:
①存在點使得是等腰三角形;
②存在點使得是銳角三角形;
③存在點使得是直角三角形.
其中,正確的結(jié)論的個數(shù)為(    )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案