【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,且點(diǎn) 在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線交橢圓于另一點(diǎn),直線交直線于點(diǎn), 求證:三點(diǎn)在同一條直線上
【答案】(1)(2)見解析
【解析】
(1)(法一)由題意,求得橢圓的焦點(diǎn)坐標(biāo),利用橢圓的定義,求得,進(jìn)而求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;
(法二)設(shè)橢圓的方程為(),列出方程組,求得的值,得到橢圓的標(biāo)準(zhǔn)方程。
(2)設(shè),,直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系和向量的運(yùn)算,即可證得三點(diǎn)共線。
(1)(法一)設(shè)橢圓的方程為,
∵一個(gè)焦點(diǎn)坐標(biāo)為,∴另一個(gè)焦點(diǎn)坐標(biāo)為,
∴由橢圓定義可知,
∴,∴,∴橢圓的方程為.
(法二)不妨設(shè)橢圓的方程為(),
∵一個(gè)焦點(diǎn)坐標(biāo)為,∴,①
又∵點(diǎn)在橢圓上,∴,②
聯(lián)立方程①,②,解得,,
∴橢圓的方程為.
(2)設(shè),,直線的方程為,
由方程組消去,并整理得:,
∵,∴,,
∵直線的方程可表示為,
將此方程與直線聯(lián)立,可求得點(diǎn)的坐標(biāo)為,
∴,
∵
,所以,
又向量和有公共點(diǎn),故,,三點(diǎn)在同一條直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為上的奇函數(shù),且當(dāng)時(shí),.
(1)求在的解析式;
(2)若,,試討論取何值時(shí),零點(diǎn)的個(gè)數(shù)最多?最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織了地理知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出40名學(xué)生,將其成績(jī)(均為整數(shù))分成六組,,…,,其部分頻率分布直方圖如圖所示.觀察圖形,回答下列問題.
(1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全這個(gè)頻率分布直方圖:
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;(計(jì)算時(shí)可以用組中值代替各組數(shù)據(jù)的平均值)
(3)從成績(jī)?cè)?/span>和的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(diǎn)(0,2),和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《周易》中,長(zhǎng)橫“”表示陽爻,兩個(gè)短橫“”表示陰爻.有放回地取陽爻和陰爻三次合成一卦,共有種組合方法,這便是《系辭傳》所說“太極生兩儀,兩儀生四象,四象生八卦”.有放回地取陽爻和陰爻一次有2種不同的情況,有放回地取陽爻和陰爻兩次有四種情況,有放回地取陽爻和陰爻三次,八種情況.所謂的“算卦”,就是兩個(gè)八卦的疊合,即共有放回地取陽爻和陰爻六次,得到六爻,然后對(duì)應(yīng)不同的解析.在一次所謂“算卦”中得到六爻,這六爻恰好有三個(gè)陽爻三個(gè)陰爻的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)兩定點(diǎn),及動(dòng)點(diǎn),的兩邊所在直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)是軸上的一點(diǎn),若(1)中軌跡上存在兩點(diǎn)使得,求以為直徑的圓面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,使等式N+都成立,
(1)猜測(cè)a,b,c的值;(2)用數(shù)學(xué)歸納法證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知扇形的周長(zhǎng)為8,面積是4,求扇形的圓心角.
(2)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和圓心角取何值時(shí),才使扇形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則下列結(jié)論中正確的是( )
A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象
B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱
C. 函數(shù)的圖象關(guān)于對(duì)稱
D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com