已知函數y=f(x),x∈D,如果對于定義域D內的任意實數x,對于給定的非零常數m,總存在非零常數T,恒有f(x+T)>m•f(x)成立,則稱函數f(x)是D上的m級類增周期函數,周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數f(x)是D上的m級類周期函數,周期為T.
(1)試判斷函數f(x)=
是否為(3,+∞)上的周期為1的2級類增周期函數?并說明理由;
(2)已知函數f(x)=-x
2+ax是[3,+∞)上的周期為1的2級類增周期函數,求實數a的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數,且y=f(x)是[0,+∞)上的單調遞增函數,當x∈[0,1)時,f(x)=2
x,求實數m的取值范圍.
(Ⅱ)已知當x∈[0,4]時,函數f(x)=x
2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數,且y=f(x)的值域為一個閉區(qū)間,求實數m的取值范圍.