(本小題滿分8分)已知函數(shù).
(1)求證:函數(shù)在上為增函數(shù);
(2)當(dāng)函數(shù)為奇函數(shù)時(shí),求的值;
(3)當(dāng)函數(shù)為奇函數(shù)時(shí), 求函數(shù)在上的值域.
(1)任取則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/9/1dbjf4.png" style="vertical-align:middle;" />所以,
, 故,所以在R上為增函數(shù)
(2)(3)
解析試題分析:(1)任取則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/9/1dbjf4.png" style="vertical-align:middle;" />所以,
, 故
所以在R上為增函數(shù)………………3分
(2)因在x=0 有意義,又為奇函數(shù),則
即……………………5分
(3)由x∈[-1,2]得
……… ……8分
考點(diǎn):本題考查了函數(shù)的性質(zhì)及值域的求法
點(diǎn)評(píng):掌握函數(shù)單調(diào)性的步驟及應(yīng)用時(shí)解決函數(shù)問題的常見方法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) 為常數(shù),
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)在處取得極值時(shí),若關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某種產(chǎn)品投放市場(chǎng)以來,通過市場(chǎng)調(diào)查,銷量t(單位:噸)與利潤(rùn)Q(單位:萬(wàn)元)的變化關(guān)系如右表,現(xiàn)給出三種函數(shù),,且,請(qǐng)你根據(jù)表中的數(shù)據(jù),選取一個(gè)恰當(dāng)?shù)暮瘮?shù),使它能合理描述產(chǎn)品利潤(rùn)Q與銷量t的變化,求所選取的函數(shù)的解析式,并求利潤(rùn)最大時(shí)的銷量.
銷量t | 1 | 4 | 6 |
利潤(rùn)Q | 2 | 5 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/5/zxa6j.png" style="vertical-align:middle;" />的偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明的單調(diào)性;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),其中為常數(shù)
(1)為奇函數(shù),試確定的值
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)實(shí)根均大于3.若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com