在平面直角坐標系中,若角α的頂點在坐標原點,始邊在x軸的非負半軸上,終邊經(jīng)過點P(3a,-4a)(其中a<0),則sinα+cosα的值為( 。
A、-
1
5
B、-
4
5
C、
3
5
D、
1
5
分析:求出OP的距離,直接利用三角函數(shù)的定義求出sinα,cosα即可.
解答:解:∵角α的頂點在坐標原點,始邊在x軸的非負半軸上,終邊經(jīng)過點P(3a,-4a)(其中a<0),
∴OP=
(3a)2+(-4a)2
=-5a,
由任意角的三角函數(shù)的定義可知,cosα=
3a
-5a
=-
3
5
.sinα=
-4a
-5a
=
4
5

∴sinα+cosα=
4
5
-
3
5
=
1
5

故選:D.
點評:本題是基礎題,考查三角函數(shù)的定義的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案