在平面直角坐標系中,已知直線的參數(shù)方程是(為參數(shù));以為極點,軸正半軸為極軸的極坐標系中,圓的極坐標方程為.
(1)寫出直線的普通方程與圓的直角坐標方程;
(2)由直線上的點向圓引切線,求切線長的最小值.

(1),曲線C:(2)

解析試題分析:先將圓的極坐標方程化為直角坐標方程,再把直線上的點的坐標(含參數(shù))代入,
化為求函數(shù)的最值問題,也可將直線的參數(shù)方程化為普通方程,
根據(jù)勾股定理轉(zhuǎn)化為求圓心到直線上最小值的問題.
試題解析:(1),曲線C:     4分
(2)因為圓的極坐標方程為,所以,
所以圓的直角坐標方程為,圓心為,半徑為1,     6分
因為直線的參數(shù)方程為(為參數(shù)),
所以直線上的點向圓C引切線長是
,
所以直線上的點向圓C引的切線長的最小值是.       10分
考點:參數(shù)方程與極坐標,直線與圓的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓的極坐標方程為ρ2-4ρ·cos+6=0.
(1)將極坐標方程化為普通方程,并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系中,已知圓的圓心為,半徑為,點為圓上異于極點的動點,求弦中點的軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π)。以原點為極點,x軸的正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為
ρcos2θ=4sinθ。
(1)求直線l與曲線C的平面直角坐標方程;
(2)設直線l與曲線C交于不同的兩點A、B,若,求α的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為為參數(shù)),點Q的極坐標為。
(1)化圓C的參數(shù)方程為極坐標方程;
(2)直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線 的直角坐標方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系中, O為極點, 半徑為2的圓C的圓心的極坐標為
(1)求圓C的極坐標方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點,已知定點,求|MA|·|MB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xoy中,曲線C1的參數(shù)方程為 (,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,)對應的參數(shù)j=,曲線C2過點D(1,).
(I)求曲線C1,C2的直角坐標方程;
(II)若點A(r1,q),B(r2,q+)在曲線C1上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系中,求曲線ρ=cosθ+1與ρcosθ=1的公共點到極點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系(ρ,θ)(0≤θ<2π)中,求曲線ρ=2sinθ與ρcosθ=1的交點Q的極坐標.

查看答案和解析>>

同步練習冊答案