【題目】如圖,菱形ABCD的對角線AC與BD交于點(diǎn)O,AB=5,AC=6,點(diǎn)E,F分別在AD,CD上,AE=CF= ,EF交BD于點(diǎn)H.將△DEF沿EF折到△ 的位置, .
(1)證明: 平面ABCD;
(2)求二面角 的正弦值.
【答案】
(1)
證明:∵ ,
∴ ,
∴ .
∵四邊形 為菱形,
∴ ,
∴ ,
∴ ,
∴ .
∵ ,
∴ ;
又 , ,
∴ ,
∴ ,
∴ ,
∴ ,
∴ .
又∵ ,
∴ 面
(2)
解:建立如圖坐標(biāo)系 .
, , , ,
, , ,
設(shè)面 法向量 ,
由 得 ,取 ,
∴ .
同理可得面 的法向量 ,
∴ ,
∴
【解析】(1)由底面ABCD為菱形,可得AD=CD,結(jié)合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,進(jìn)一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由線面垂直的判定得D′H⊥平面ABCD;(2)以H為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,由已知求得所用點(diǎn)的坐標(biāo),得到 的坐標(biāo),分別求出平面ABD′與平面AD′C的一個法向量 ,設(shè)二面角二面角B﹣D′A﹣C的平面角為θ,求出|cosθ|.則二面角B﹣D′A﹣C的正弦值可求
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)在四棱錐中, ,
, 平面,直線PC與平面ABCD所成角為, .
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點(diǎn),求證:平面 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(1)補(bǔ)全頻率分布直方圖;
(2)估計(jì)本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個單位長度,則評議后圖象的對稱軸為( )
A.x= – (k∈Z)
B.x= + (k∈Z)
C.x= – (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】α、β是兩個平面,m、n是兩條直線,有下列四個命題:
①如果m⊥n , m⊥α , n∥β , 那么α⊥β.
②如果m⊥α , n∥α , 那么m⊥n.
③如果α∥β , m α , 那么m∥β.
④如果m∥n , α∥β , 那么m與α所成的角和n與β所成的角相等.
其中正確的命題有.(填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的焦點(diǎn)在 軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(1)當(dāng)t=4, 時,求△AMN的面積;
(2)當(dāng) 時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長方形中,為的中點(diǎn),為線段上一動點(diǎn).現(xiàn)將沿折起,形成四棱錐.
圖1 圖2 圖3
(Ⅰ)若與重合,且(如圖2).
(ⅰ)證明:平面;
(ⅱ)求二面角的余弦值.
(Ⅱ)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從含有兩件正品a,b和一件次品c的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中,恰有一件是次品的概率。
(1)每次取出不放回;(2)每次取出放回;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示,在多面體 中,四邊形 均為正方形,點(diǎn) 為 的中點(diǎn),過的平面交 于 點(diǎn).
(1) 證明: ∥;
(2) 求二面角 的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com