【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預(yù)計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關(guān)系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
(1)求的解析式;
(2)當時,不等式有解,求實數(shù)的取值范圍;
(3)設(shè),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a﹣bx3)ex﹣ ,且函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當x∈(0,1)時,f(x)>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計 | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請說明是否有以上的把握認為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當 時,求函數(shù)圖象在點處的切線方程;
(2)當時,討論函數(shù)的單調(diào)性;
(3)是否存在實數(shù),對任意,且有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1) 若,求曲線在處的切線方程;
(2)求函數(shù)單調(diào)區(qū)間
(3) 若有兩個零點,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量(單位:克)分別在,,,,,中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率;
(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
方案:所有芒果以10元/千克收購;
方案:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分時,才能使區(qū)平均每個分店的年利潤最大?
(參考公式: ,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com