【題目】(1)將101111011(2)轉(zhuǎn)化為十進(jìn)制的數(shù);
(2)將53(8)轉(zhuǎn)化為二進(jìn)制的數(shù).
【答案】解:(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.
(2)53(8)=5×81+3=43.
∴53(8)=101011(2) .
【解析】(1)根據(jù)二進(jìn)制轉(zhuǎn)換為十進(jìn)制方法逐位進(jìn)行轉(zhuǎn)換,即可得到答案;
(2)進(jìn)位制之間的轉(zhuǎn)化一般要先化為十進(jìn)制數(shù),再化為其它進(jìn)位制數(shù),先將8進(jìn)制數(shù)轉(zhuǎn)化為十進(jìn)制數(shù),再由除2取余法轉(zhuǎn)化為二進(jìn)制數(shù),進(jìn)行求解;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解排序問題與算法的多樣性的相關(guān)知識(shí),掌握算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題,以及對(duì)進(jìn)位制的理解,了解進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲袋中有1個(gè)黃球和2個(gè)紅球,乙袋中有2個(gè)黃球和2個(gè)紅球,現(xiàn)隨機(jī)地從甲袋中取出兩個(gè)球放入乙袋中,然后從乙袋中隨機(jī)取出1個(gè)球,則從乙袋中取出紅球的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, , , , 是圓柱底面圓周的四等分點(diǎn), 是圓心, , , 與底面垂直,底面圓的直徑等于圓柱的高.
(1)證明: ;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中, ,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為.
(1)若,且,求;
(2)是否存在實(shí)數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請(qǐng)說明理由;
(3)若,求.(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若沿著三條中位線折起后能夠拼接成一個(gè)三棱錐,則稱這樣的為“和諧三角形”,設(shè)的三個(gè)內(nèi)角分別為, , ,則下列條件不能夠確定為“和諧三角形”的是
A. ; B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿足y2<4x的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: + =1(a>b>0)過點(diǎn)A(1, ),其焦距為2.
(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質(zhì):若橢圓的方程為 + =1(a>b>0),則橢圓在其上一點(diǎn)A(x0 , y0)處的切線方程為 + =1,試運(yùn)用該性質(zhì)解決以下問題:
(i)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(ii)如圖(2),過橢圓C2: + =1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com