15.橢圓$\frac{x^2}{2}$+y2=1的焦距為( 。
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

分析 根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程可得a2=2,b2=1,由橢圓的性質(zhì)可得c的值,進(jìn)而由橢圓焦距的定義可得答案.

解答 解:根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{1}$=1,
則有a2=2,b2=1,
則c=$\sqrt{{a}^{2}-^{2}}$=1,
故該橢圓的焦距為2c=2;
故選:B.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),注意焦距是2c,不是c.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=2|x|+x2,若f(a-1)≤3,則a的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)P,Q分別為直線x-y=0和圓(x-8)2+y2=2上的點(diǎn),則|PQ|的最小值為( 。
A.2$\sqrt{2}$B.3$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值為a.
(1)求a;
(2)已知p,q,r是正實(shí)數(shù),且滿足p+q+r=3a,求p2+q2+r2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則z+z2-z3=(  )
A.2zB.-2zC.2$\overline{z}$D.-2$\overline{z}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從焦點(diǎn)為F的拋物線y2=2px(p>0)上取一點(diǎn)A(x0,y0)(x0>$\frac{p}{2}$)作其準(zhǔn)線的垂線,垂足為B.若|AF|=4,B到直線AF的距離為$\sqrt{7}$,則此拋物線的方程為( 。
A.y2=2xB.y2=3xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{AB}$=(1,2,1),$\overrightarrow{AC}$=(0,1,-2),則平面ABC的一個(gè)法向量可以是( 。
A.(5,-2,-1)B.(-6,2,2)C.(3,1,-2)D.(4,-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(-m,0),B(m,0),若圓C上存在點(diǎn)P,使得∠APB=90°,則正數(shù)m的最小值與最大值的和為( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以(2,1)為圓心且與直線y+1=0相切的圓的方程為( 。
A.(x-2)2+(y-1)2=4B.(x-2)2+(y-1)2=2C.(x+2)2+(y+1)2=4D.(x+2)2+(y+1)2=2

查看答案和解析>>

同步練習(xí)冊答案