【題目】若方程有實(shí)數(shù)根,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)().
(1)若,求證:有唯一不動(dòng)點(diǎn);
(2)若有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】(1)證明見解析;(2)
【解析】
(1)依題意,令(),利用導(dǎo)數(shù)可知在上單調(diào)遞減,在上單調(diào)遞增,且時(shí),取的最小值0,由此即可得出結(jié)論;
(2)先證明,則有兩個(gè)不動(dòng)點(diǎn)等價(jià)于函數(shù)在上有兩個(gè)不同的零點(diǎn),求出的導(dǎo)數(shù),得到其單調(diào)性,得到函數(shù)的最小值,即可得到的取值范圍,再證明時(shí),有兩個(gè)零點(diǎn);
解:(1)證明:當(dāng)時(shí),由得,
令(),
則,易知在上恒成立,
故當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
∴,
∴方程有唯一實(shí)數(shù)根,故有唯一不動(dòng)點(diǎn);
(2)先證明,令,則,,當(dāng)時(shí),,當(dāng)時(shí),,從而,因此在上單調(diào)遞增,故,所以,即,有兩個(gè)不動(dòng)點(diǎn)等價(jià)于函數(shù)在上有兩個(gè)不同的零點(diǎn),
易知,,當(dāng)時(shí),,當(dāng)時(shí),,所以有,所以,即,
下面說明時(shí),有兩個(gè)零點(diǎn),取有,故,取,且,故,又,由零點(diǎn)存在性定理知在存在唯一,使得,在內(nèi)存在使,綜上有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性:
(2)若函數(shù)在區(qū)間上的最小值為0,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局統(tǒng)計(jì)了我國(guó)近10年(2009年2018年)的GDP(GDP是國(guó)民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個(gè)國(guó)家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計(jì)圖.
根據(jù)該折線統(tǒng)計(jì)圖,下面說法錯(cuò)誤的是
A. 這10年中有3年的GDP增速在9.00%以上
B. 從2010年開始GDP的增速逐年下滑
C. 這10年GDP仍保持6.5%以上的中高速增長(zhǎng)
D. 2013年—2018年GDP的增速相對(duì)于2009年—2012年,波動(dòng)性較小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)( )
A.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
B.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來的3倍橫坐標(biāo)不變
C.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
D.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來的3倍,橫坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若a=1,且f(x)≥m在(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2元.
(1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;
(2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6元.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時(shí),是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中.已知:數(shù)列的前項(xiàng)和為,且, .求:對(duì)大于1的自然數(shù),是否存在大于2的自然數(shù),使得,,成等比數(shù)列.若存在,求的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某款電視機(jī)的壽命,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)分組:,,,,,并統(tǒng)計(jì)如圖所示:
并對(duì)不同性別的市民對(duì)這款電視機(jī)的購(gòu)買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
愿意購(gòu)買該款電視機(jī) | 不愿意購(gòu)買該款電視機(jī) | 總計(jì) | |
男性 | 800 | 1000 | |
女性 | 600 | ||
總計(jì) | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均壽命;
(2)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“是否愿意購(gòu)買該款電視機(jī)”與“市民的性別”有關(guān);
(3)以頻率估計(jì)概率,若在該款電視機(jī)的生產(chǎn)線上隨機(jī)抽取4臺(tái),記其中壽命不低于4年的電視機(jī)的臺(tái)數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù):,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com