如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連結(jié)BC并延長(zhǎng)至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.
解:設(shè)動(dòng)點(diǎn)P(x,y),由題意可知P是△ABD的重心,
由A(-1,0),B(1,0),
令動(dòng)點(diǎn)C(x0,y0),則D(2x0-1,2y0),
由重心坐標(biāo)公式:,則,
代入x2+y2=1,
整理得所求軌跡方程為(x+)2+y2=(y≠0)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連接BC并延長(zhǎng)至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)過(guò)原點(diǎn)O作直線l的垂線,垂足為H,若動(dòng)點(diǎn)M0滿足2
OM
=3
OH
,當(dāng)φ變化時(shí),求點(diǎn)M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(2,0),B(1,0),點(diǎn)D,E同時(shí)從點(diǎn)B出發(fā)沿單位圓O逆時(shí)針運(yùn)動(dòng),且點(diǎn)E的角速度是點(diǎn)D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
(Ⅰ)當(dāng)∠BOD=
π6
,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點(diǎn)間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省山大附中2011-2012學(xué)年高一下學(xué)期期中考試數(shù)學(xué)試題 題型:044

如圖,已知點(diǎn)A(1,1)和單位圓上半部分上的動(dòng)點(diǎn)B.

(1)若,求向量;

(2)求||的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案