17.(Ⅰ)已知a+2b+3c=6,求a2+2b2+3c2的最小值.
(Ⅱ)求$\sqrt{-3x+12}$+$\sqrt{x}$的最大值.

分析 (I)(II)利用柯西不等式的性質(zhì)即可得出.

解答 解:(I)∵a+2b+3c=6,
∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+($\sqrt{2}$b)2+($\sqrt{3}$c)2]
化簡(jiǎn)得62≤3(a2+2b2+3c2),即36≤3(a2+2b2+3c2
∴a2+2b2+3c2≥12,
當(dāng)且僅當(dāng)a:$\sqrt{2}$b:$\sqrt{3}$c=1:1:1時(shí),即a=$\frac{6}{1+\sqrt{2}+\sqrt{3}}$,b=$\frac{3\sqrt{2}}{1+\sqrt{2}+\sqrt{3}}$,c=$\frac{2\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}$時(shí)等號(hào)成立.
由此可得:a2+2b2+3c2的最小值為12.
(Ⅱ)y=$\sqrt{-3x+12}$+$\sqrt{x}$,由$\left\{\begin{array}{l}{-3x+12≥0}\\{x≥0}\end{array}\right.$,解得0≤x≤4,可得函數(shù)y的定義域?yàn)閇0,4].
∴y=$\sqrt{3}•\sqrt{-x+4}$+$\sqrt{x}$≤$\sqrt{1+3}$$•\sqrt{-x+4+x}$=4,當(dāng)且僅當(dāng)$\sqrt{3}\sqrt{x}$=$\sqrt{-x+4}$,即x=1時(shí)取等號(hào).
∴$\sqrt{-3x+12}$+$\sqrt{x}$的最大值為4.

點(diǎn)評(píng) 本題考查了柯西不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-$\frac{1}{3}$x3+x2+ax+b在x=3取得極值為4,則f(x)在區(qū)間[-2,1]上的最大值為( 。
A.-1B.0C.-$\frac{4}{3}$D.-$\frac{13}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{3}$ax+b(a、b為常數(shù)).
(Ⅰ)若函數(shù)f(x)與g(x)的圖象在(1,f(1))處相切,求g(x)的解析式;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)+$\frac{a}{x}$(a>1),若h(x)在[1,e]上的最小值為2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某同學(xué)在獨(dú)立完成課本上的例題:“求證:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”后,又進(jìn)行了探究,發(fā)現(xiàn)下面的不等式均成立.$\sqrt{0}+\sqrt{10}<2\sqrt{5}$
$\sqrt{1.3}+\sqrt{8.7}<2\sqrt{5}$
$\sqrt{2}+\sqrt{8}<2\sqrt{5}$
$\sqrt{4.6}+\sqrt{5.4}<2\sqrt{5}$
$\sqrt{5}+\sqrt{5}≤2\sqrt{5}$
經(jīng)過認(rèn)真地分析、嘗試,該同學(xué)歸納出一個(gè)一般性的不等式:$\sqrt{x}$+$\sqrt{y}$≤2$\sqrt{\frac{x+y}{2}}$(x,y∈[0,+∞)).請(qǐng)用合適的方法證明該不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx-1在x=-1處取得極值,且在點(diǎn)(0,-1)處的切線與直線2x-y=0平行.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=xf(x)+2x的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)當(dāng)e≤x≤e2時(shí),求函數(shù)f(x)的最小值;
(2)已知函數(shù)g(x)=2x-$\frac{ax(x-1)}{lnx}$,且f(x)g(x)≤0恒成立,求實(shí)數(shù)a的值;
(3)某同學(xué)發(fā)現(xiàn):存在正實(shí)數(shù)m、n(m<n),使mn=nm,試問:他的發(fā)現(xiàn)是否正確?若不正確,則請(qǐng)說明理由;若正確,則請(qǐng)直接寫出m的取值范圍,而不需要解答過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍為( 。
A.(-∞,-2)B.(-∞,0)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=4sin2x+4sinxcos(x+$\frac{π}{6}$)-1.
(Ⅰ)當(dāng)0≤x≤π時(shí),求方程f(x)=1的解;
(Ⅱ)若函數(shù)g(x)=$\frac{1}{2}|{f(x+\frac{π}{12})}|+\frac{1}{2}|{f(x+\frac{π}{3})}$|(x∈R),試判斷函數(shù)g(x)的奇偶性,并求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{xlnx}{x-1}$,g(x)=-$\frac{1}{2}$a(x2-x-2),其中a∈R
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x>0,不等式f(x+1)>g(x)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案