【題目】已知是定義在(0,+∞)上的增函數(shù),且滿足=+=1.
(1)求證: =3;
(2)求不等式>3的解集.
【答案】(1)(2){x|2< <}
【解析】試題分析:(1)本小題應(yīng)用賦值法可求得,令,得,令,得;(2)解此不等式,必須利用函數(shù)為減函數(shù)的性質(zhì),因此把不等式變?yōu)?/span>,即為,由減函數(shù)定義有,再結(jié)合函數(shù)定義域可得不等式的解集.
試題解析:(1)證明: 由題意得
f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)
又∵f(2)=1
∴f(8)=3
(2)解:∵f(8)=3
∴f(x)>f(x-2)+f(8)=f(8x-16)
∵f(x)是(0,+∞)上的減函數(shù)
∴
解得
的解集是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的函數(shù)關(guān)系式是
銷售量g(t)與時(shí)間t的函數(shù)關(guān)系式是g(t)=- + (0≤t≤100),求這種商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PA=1,求點(diǎn)E到平面PFD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ax2﹣2x存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測A超市廣告費(fèi)支出為3萬元時(shí)的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = , = ﹣ x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紡織廠訂購一批棉花,其各種長度的纖維所占的比例如下表所示:
(1)請估計(jì)這批棉花纖維的平均長度與方差.
(2)如果規(guī)定這批棉花纖維的平均長度為4.90厘米,方差不超過1.200,兩者允許誤差均不超過0.10視為合格產(chǎn)品.請你估計(jì)這批棉花的質(zhì)量是否合格?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)上是減函數(shù),在上是增函數(shù).
(1)用函數(shù)單調(diào)性定義來證明上的單調(diào)性;
(2)已知, ,求函數(shù)的值域;
(3)對于(2)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,函數(shù) (a>0),若存在 ,使得 成立,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com