選修4-5  不等式選講
解不等式|2x+1|-|x-4|>2.
分析:由不等式可得 ①
x<-
1
2
-2x-1-(4-x)>2
,或 ②
4>x≥-
1
2
2x+1-(4-x)>2
,或③
x≥ 4
2x+1-(x-4)>2

分別求得①②③的解集,再取并集即得所求.
解答:解:由不等式|2x+1|-|x-4|>2可得 ①
x<-
1
2
-2x-1-(4-x)>2
,或 ②
4>x≥-
1
2
2x+1-(4-x)>2
,
或③
x≥ 4
2x+1-(x-4)>2

解①得x<-7,解②得 4>x>
5
3
,解③得 x≥4.
故不等式的解集為 {x|x<-7,或x>
5
3
}.
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線(xiàn)ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線(xiàn)ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線(xiàn),且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(選修4-4坐標(biāo)系與參數(shù)方程)已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2sinθ,直線(xiàn)l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)).設(shè)直線(xiàn)l與x軸的交點(diǎn)是M,N是曲線(xiàn)C上一動(dòng)點(diǎn),則|MN|的最大值為
5
+1
5
+1

(2)(選修4-5不等式選講)設(shè)函數(shù)f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,則實(shí)數(shù)x的取值范圍是
1
2
≤x≤
5
2
1
2
≤x≤
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(選修4-4坐標(biāo)系與參數(shù)方程)
已知直線(xiàn)的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則極點(diǎn)到該直線(xiàn)的距離是
2
2
2
2

(2)(選修4-5 不等式選講)
已知lga+lgb=0,則滿(mǎn)足不等式
a
a2+1
+
b
b2+1
≤λ
的實(shí)數(shù)λ的范圍是
[1,+∞)
[1,+∞)

(3)(選修4-1 幾何證明選講)
如圖,兩個(gè)等圓⊙O與⊙O′外切,過(guò)O作⊙O′的兩條切線(xiàn)OA,OB,A,B是切點(diǎn),點(diǎn)C在圓O′上且不與點(diǎn)A,B重合,則∠ACB=
60°
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)(選修4-5不等式選講)
已知函數(shù)f(x)=|x-a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4-|x-4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(A)(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線(xiàn)ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線(xiàn)ρsin(θ+
π
3
)=4
的距離的最小值是
5
2
5
2

(B)(選修4-5不等式選講)已知2x+y=1,x>0,y>0,則
x+2y
xy
的最小值是
9
9

(C)(選修4-1幾何證明選講)若直角△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,且AD=1,BD=2,則△ABC的面積為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案