已知雙曲線與橢圓共焦點(diǎn),它們的離心率之和為,求雙曲線方程.(10分)
雙曲線方程為:
由于橢圓焦點(diǎn)為F(0,4),離心率為e=,所以雙曲線的焦點(diǎn)為F(0,4),離心率為2,
從而c=4,a=2,b=2.
所以求雙曲線方程為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是雙曲線上一點(diǎn),且滿足,則該點(diǎn)一定位于雙曲線(   )
A.右支上B.上支上C.右支上或上支上D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一炮彈在A處的東偏北60°的某處爆炸,在A處測到爆炸信號的時間比在B處早4秒,已知A在B的正東方、相距6千米, P為爆炸地點(diǎn),(該信號的傳播速度為每秒1千米)求A、P兩地的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一條漸近線方程為y=x,且過點(diǎn)(2,4)的雙曲線方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線4x2-9y2=36上一點(diǎn)P到右焦點(diǎn)的距離為3,則P到左準(zhǔn)線的距離為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線與橢圓=1有共同的焦點(diǎn),且與此橢圓一個交點(diǎn)的縱坐標(biāo)為4,求這個雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若k>1,則關(guān)于x、y的方程(1-k)x2+y2=k2-1所表示的曲線是(    )
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.焦點(diǎn)在y軸上的雙曲線D.焦點(diǎn)在x軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P是雙曲線x2-y2=16的左支上一點(diǎn),F(xiàn)1、F2分別是左、右焦點(diǎn),則|PF1|-|PF2|=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)M(-2,0),N(2,0),動點(diǎn)P滿足條件,該動點(diǎn)的軌跡為F,
(1)求F的方程。
(2)若A、B是F上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求的最小值。

查看答案和解析>>

同步練習(xí)冊答案