關(guān)于函數(shù)的單調(diào)性,下列說法正確的是


  1. A.
    f(x)=x2+1是增函數(shù)
  2. B.
    f(x)=x2+1在(-∞,-5)上是減函數(shù)
  3. C.
    數(shù)學(xué)公式在R上是減函數(shù)
  4. D.
    f(x)=x2+1在(-5,+∞)上是增函數(shù)
B
分析:根據(jù)二次函數(shù)的圖象和性質(zhì),可判斷A,B,D的真假;根據(jù)反比例函數(shù)的圖象和性質(zhì),可判斷C的真假.
解答:f(x)=x2+1在(-∞,0)上是減函數(shù),故A錯誤;
f(x)=x2+1在(-∞,0)上是減函數(shù),(-∞,-5)⊆(-∞,0),故f(x)=x2+1在(-∞,-5)上是減函數(shù),故B正確;
在(-∞,0)和(0,+∞)上是減函數(shù),但在R上不是單調(diào)函數(shù),故C錯誤;
f(x)=x2+1在(-5,0)上是減函數(shù),故D錯誤
故選B
點評:本題考查的知識點是函數(shù)單調(diào)性的判斷與證明,熟練掌握二次函數(shù)的圖象和性質(zhì)及反比例函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1.
(1)當(dāng)x∈[1,+∞)時,判斷f(x)的單調(diào)性并證明;
(2)在(1)的條件下,若m滿足f(3m)>f(5-2m),試確定m的取值范圍.
(3)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù).若關(guān)于x的方程g(x)=0在(0,2)上有兩個解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2x
-4,(x>0)
,g(x)和f(x)的圖象關(guān)于原點對稱.
(I)求函數(shù)g(x)的解析式;
(II)試判斷g(x)在(-1,0)上的單調(diào)性,并給予證明;
(III)將函數(shù)g(x)的圖象向右平移a(a>0)個單位,再向下平移b(b>0)個單位,若對于任意的a,平移后gf(x)和f(x)的圖象最多只有一個交點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:044

以O(shè)為原點,所在直線為x軸,建立如圖所示的直角坐標(biāo)系.設(shè),點F的坐標(biāo)為,點G的坐標(biāo)為

(1)求關(guān)于t的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷.

(2)設(shè)的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當(dāng)取得最小值時橢圓的方程.

(3)在(2)的條件下,若點P的坐標(biāo)為是橢圓上的兩點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以O(shè)為原點,所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點F的坐標(biāo)為,,點G的坐標(biāo)為

(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;

(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當(dāng)取最小值時橢圓的方程;

(3)在(2)的條件下,若點P的坐標(biāo)為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市五區(qū)高三學(xué)業(yè)調(diào)研抽測1文科數(shù)學(xué)試卷(解析版) 題型:解答題

經(jīng)調(diào)查統(tǒng)計,某種型號的汽車在勻速行駛中,每小時的耗油量(升)關(guān)于行駛速度(千米/時)的函數(shù)可表示為.已知甲、乙兩地相距千米,在勻速行駛速度不超過千米/時的條件下,該種型號的汽車從甲地 到乙地的耗油量記為(升).

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)討論函數(shù)的單調(diào)性,當(dāng)為多少時,耗油量為最少?最少為多少升?

 

查看答案和解析>>

同步練習(xí)冊答案