【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構成,菱形的一個角度是,這樣的設計含有深刻的數(shù)學原理、我國著名數(shù)學家華羅庚曾專門研究蜂巢的結構著有《談談與蜂房結構有關的數(shù)學問題》.用數(shù)學的眼光去看蜂巢的結構,如圖,在六棱柱的三個頂點,,處分別用平面,平面,平面截掉三個相等的三棱錐,,平面,平面,平面交于點,就形成了蜂巢的結構.如圖,以下四個結論①;②;③,,,四點共面;④異面直線所成角的大小為.其中正確的個數(shù)是( ).

A.1B.2C.3D.4

【答案】B

【解析】

不妨設正六邊形的邊長為1,①由已知可得都是邊長為的等邊三角形,即可判斷出正誤;②由①可知:,即可判斷出正誤;③由已知可得:四邊形是平行四邊形,即可判斷出正誤;④利用異面直線所成角的范圍即可判斷出正誤.

由題意,不妨設正六邊形的邊長為1,

①由都是邊長為的等邊三角形,∴,正確;

②由①可知:,因此②不正確;

③由已知可得:四邊形是平行四邊形,因此,,,四點共面,正確;

④異面直線所成角不可能為鈍角.因此不正確.

其中正確的個數(shù)是2

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若直線是曲線的一條切線,求實數(shù)的值;

(2)當時,若函數(shù)上有兩個零點.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,為正三角形,平面平面E的中點,,

(Ⅰ)求證:平面平面

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在棱上是否存在點M,使得平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】互聯(lián)網智慧城市的重要內士,市在智慧城市的建設中,為方便市民使用互聯(lián)網,在主城區(qū)覆蓋了免費.為了解免費市的使用情況,調査機構借助網絡進行了問卷調查,并從參與調査的網友中抽取了人進行抽樣分析,得到如下列聯(lián)表(單位:人)

經常使用免費WiFi

偶爾或不用免費WiFi

合計

45歲及以下

70

30

100

45歲以上

60

40

100

合計

130

70

200

1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為市使用免費的情況與年齡有關;

2)將頻率視為概率,現(xiàn)從該市歲以上的市民中用隨機抽樣的方法每次抽取人,共抽取次.記被抽取的人中偶爾或不用免費的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列,數(shù)學期望和方差

附:,其中

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

1)當時,判斷函數(shù)的單調性;

2)當時,記的兩個極值點為,若不等式恒成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)設,為函數(shù)的兩個極值點,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線

(Ⅰ)求曲線C被直線l截得的弦長;

(Ⅱ)與直線l垂直的直線EF與曲線C相切于點Q,求點Q的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),已知函數(shù)在x=1處的切線方程為.

1)求a的值;

2)求證:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調查,其中女生有55名.下面是根據(jù)調查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:

將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康類學生中有10名女生.

1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有的把握認為達到體育健康類學生與性別有關?

非體育健康類學生

體育健康類學生

合計

男生

女生

合計

2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康類學生中有2名女生,若從體育健康類學生中任意選取2人,求至少有1名女生的概率.

附:

查看答案和解析>>

同步練習冊答案