【題目】(本題滿分12分.)
數(shù)列中{an},a1=8,a4=2,且滿足an+2= 2an+1- an,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=,求Sn
【答案】
【解析】
試題分析:(1)由an+2=2an+1-an( n∈N*),變形為an+2-an+1=an+1-an,可知{ an}為等差數(shù)列,由已知利用通項(xiàng)公式即可得出.(2)由數(shù)列通項(xiàng)公式確定數(shù)列中的負(fù)數(shù)項(xiàng)和正數(shù)項(xiàng),分情況去掉絕對(duì)值進(jìn)行數(shù)列求和
試題解析:(1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差數(shù)列,
d==-2,∴an=10-2n.
(2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時(shí),Sn=-n2+9n,當(dāng)n>5時(shí),Sn=n2-9n+40,故Sn=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為 ,且點(diǎn) 在橢圓 上.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓 上異于其頂點(diǎn)的任意一點(diǎn) 作圓 的兩條切線,切點(diǎn)分別為 ( 不在坐標(biāo)軸上),若直線 在 軸, 軸上的截距分別為 ,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱中,底面邊長(zhǎng)為2,為的中點(diǎn),三棱柱的體積.
(1)求三棱柱的表面積;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊半徑為的正常數(shù))的半圓形空地,開(kāi)發(fā)商計(jì)劃征地建一個(gè)矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.
(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;
(2)當(dāng)滿足取得最大值時(shí),開(kāi)發(fā)效果最佳,求出開(kāi)發(fā)效果最佳的角的值,
求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{ 滿足 , .
(1)求證:數(shù)列 是等比數(shù)列;
(2)若數(shù)列 是單調(diào)遞增數(shù)列,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天時(shí)間與水深(單位:米)的關(guān)系表:
時(shí)刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請(qǐng)用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深y與時(shí)間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時(shí),船底離海底的距離為5米或5米以上認(rèn)為是安全的(船舶?繒r(shí),船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。
Ⅰ)如果該船是旅游船,1:00進(jìn)港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)?
Ⅱ)如果該船是貨船,在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.5米的速度減少,由于臺(tái)風(fēng)等天氣原因該船必須在10:00之前離開(kāi)該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點(diǎn)時(shí)刻必須停止卸貨(忽略出港所需時(shí)間)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com