6.已知數(shù)列{an}滿足條件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,則數(shù)列{an}的通項公式為( 。
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

分析 利用數(shù)列的遞推關(guān)系式,直接求解數(shù)列的通項公式即可.

解答 解:數(shù)列{an}滿足條件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,
可得:$\frac{1}{3}{a}_{1}+\frac{1}{{3}^{2}}{a}_{2}+\frac{1}{{3}^{3}}{a}_{3}+…+\frac{1}{{3}^{n-1}}{a}_{n-1}$=3n-2,(n≥2).
兩式作差可得:$\frac{1}{{3}^{n}}$an=3,
可得:an=3n+1,
當n=1時,a1=12,
${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$.
故選:D.

點評 本題考查數(shù)列的遞推關(guān)系式以及通項公式的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,${i^7}-\frac{2}{i}$=( 。
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等比數(shù)列{an}的首項為a1,公比為q,滿足a1(q-1)<0且q>0,則( 。
A.{an}的各項均為正數(shù)B.{an}的各項均為負數(shù)
C.{an}為遞增數(shù)列D.{an}為遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)$f(x)=[x+\frac{3}{2}]$(取整函數(shù)),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,則f(g(π))的值為( 。
A.1B.0C.2D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.計算:log29•log38=( 。
A.6B.8C.10D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$
(1)求目標函數(shù)z=3x-y的最大值;
(2)若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,直三棱柱ABC-A1B1C1中,∠BCA=90°,點D1,F(xiàn)1分別是A1B1,A1C1的中點,若BC=CA=2CC1,則BD1與AF1所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:3x-2y+3$\sqrt{13}$=0,且雙曲線的一個焦點在直線l上,則雙曲線方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1D.$\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是真命題,則實數(shù)m的最小值為2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案