【題目】某種汽車(chē)購(gòu)買(mǎi)時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)共0.9萬(wàn)元,汽車(chē)的維修保養(yǎng)費(fèi)為:第一年0.2萬(wàn)元,第二年0.4萬(wàn)元,第三年0.6萬(wàn)元,……依等差數(shù)列逐年遞增.

(1)求該車(chē)使用了3年的總費(fèi)用(包括購(gòu)車(chē)費(fèi)用)為多少萬(wàn)元?

(2)設(shè)該車(chē)使用年的總費(fèi)用(包括購(gòu)車(chē)費(fèi)用)為),試寫(xiě)出的表達(dá)式;

(3)求這種汽車(chē)使用多少年報(bào)廢最合算(即該車(chē)使用多少年平均費(fèi)用最少).

【答案】(1)20.8;(2) ;(3)3.6.

【解析】試題分析:(1)由題意,即可得到年總費(fèi)用為萬(wàn)元;

(2)根據(jù)題意保養(yǎng)維修為成首項(xiàng)為,公差為的等差數(shù)列,利用等差數(shù)列的前項(xiàng)和公式,即可求得的表達(dá)式;

(3)設(shè)年平均費(fèi)用為,利用基本不等式即可求解年平均費(fèi)用最少值.

試題解析:

(1) 3年總費(fèi)用為萬(wàn)元

(2)因?yàn)槊磕瓯pB(yǎng)維修為成首項(xiàng)為,公差為的等差數(shù)列,

所以 第年保養(yǎng)維修費(fèi)為,

使用了年的總費(fèi)用

(3)設(shè)年平均費(fèi)用為,則

所以

因?yàn)?(當(dāng)且僅當(dāng)時(shí),取等號(hào))

所以

答 :使用13年,年平均費(fèi)用最少,最小值為萬(wàn)元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值4和最小值1.設(shè).

(1)求的值;

(2)若不等式上有解,求實(shí)數(shù)的取值范圍;

(3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn) 為參數(shù))經(jīng)過(guò)橢圓 為參數(shù))的左焦點(diǎn) .
(1)求 的值;
(2)設(shè)直線(xiàn) 與橢圓 交于 兩點(diǎn),求 的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系上一動(dòng)點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍。

(1)求點(diǎn)的軌跡方程;

(2)若點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求,兩點(diǎn)間距離的最大值。

(3)若過(guò)點(diǎn)的直線(xiàn)與點(diǎn)的軌跡相交于兩點(diǎn),,則是否存在直線(xiàn),使 取得最大值,若存在,求出此時(shí)的方程,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊(duì)展開(kāi)搜索,小島在正方形編隊(duì)外(如圖).設(shè)小島的距離為,,船到小島的距離為.

(1)請(qǐng)分別求關(guān)于的函數(shù)關(guān)系式,并分別寫(xiě)出定義域;

(2)當(dāng)兩艘船之間的距離是多少時(shí)搜救范圍最大(即最大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)記數(shù)列的前項(xiàng)和為,;

(3)是否存在正整數(shù),使得仍為數(shù)列中的項(xiàng),若存在,求出所有滿(mǎn)足的正整數(shù)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中用 表示.

(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求 及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1 (t為參數(shù),t ≠ 0),其中0 ≤ α < π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2 ,C3
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,滿(mǎn)足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=anbn , 設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n , 求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案