已知點(diǎn)M(x0,y0)在圓x2+y2=4上運(yùn)動(dòng),N(4,0),點(diǎn)P(x,y)為線段MN的中點(diǎn).
(1)求點(diǎn)P(x,y)的軌跡方程;
(2)求點(diǎn)P(x,y)到直線3x+4y-86=0的距離的最大值和最小值.
分析:(1)由線段的中點(diǎn)坐標(biāo)公式,算出點(diǎn)M(x0,y0)即M(2x-4,2y),將M坐標(biāo)代入圓x2+y2=4并化簡(jiǎn),即可得到點(diǎn)P(x,y)的軌跡方程;
(2)根據(jù)P的軌跡是以C(2,0)為圓心、半徑等于1的圓,算出C到已知直線的距離,再分別加上、減去半徑,即可得到點(diǎn)P到已知直線距離的最大值和最小值.
解答:解:(1)根據(jù)線段中點(diǎn)坐標(biāo)公式,得
2x=x0+4
2y=y0

解得x0=2x-4,y0=2y,
∵點(diǎn)M(x0,y0)即M(2x-4,2y)在圓x2+y2=4上運(yùn)動(dòng),
∴M坐標(biāo)代入,得(2x-4)2+4y2=4,
化簡(jiǎn)得(x-2)+y2=1,即為點(diǎn)P(x,y)的軌跡方程;
(2)∵點(diǎn)P(x,y)的軌跡是以C(2,0)為圓心,半徑等于1的圓
∴求得C到直線3x+4y-86=0的距離d=
|3×2+0-86|
32+42
=16
可得點(diǎn)P(x,y)到直線3x+4y-86=0的距離的最大值為16+1=17,最小值為16-1=15.
點(diǎn)評(píng):本題給出動(dòng)點(diǎn)的軌跡,求其方程并求點(diǎn)到直線的距離的最值.著重考查了點(diǎn)到直線的距離公式、圓的方程、線段的中點(diǎn)坐標(biāo)公式和動(dòng)點(diǎn)軌跡的求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x0,y0)為曲線E上任意一點(diǎn).求證:點(diǎn)P(
3x0-2
2-x0
,
4y0
2-x0
)
關(guān)于直線x0x+2y0y=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x0,y0)是函數(shù)f(x)=sinx的圖象上一點(diǎn),且f(x0)=1,則該函數(shù)圖象在點(diǎn)M處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x0,y0)(x0≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長(zhǎng)為2p;
②若p=2,則|MF|-x0恒為定值1;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則|MN|=4
3
;
④若2p=1,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=-x+3對(duì)稱.
其中你認(rèn)為正確的所有命題的序號(hào)為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x0,y0)(x0≠0)在拋物線E:y2=2px(p>0)上,拋物線的焦點(diǎn)為F.有以下命題:
①拋物線E的通徑長(zhǎng)為2p;
②若以M為切點(diǎn)的拋物線E的切線為l,則直線y=y0與直線l所成的夾角和直線MF與直線l所成的夾角相等;
③若2p=1,且△MON(O為坐標(biāo)原點(diǎn),N在拋物線E上)為正三角形,則|MN|=4
3
;
④若2p=1,b∈(
3
4
,+∞)
,則拋物線E上一定存在兩點(diǎn)關(guān)于直線y=-x+b對(duì)稱.
其中你認(rèn)為正確的所有命題的序號(hào)為
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案