若函數(shù)f(x)=
f(x+2),(x<2)
2-x
 ,
 (x≥2)
,則f(-3)的值為(  )
分析:根據(jù)條件可得f(-3)=f(-3+2)=f(-1)=(-1+2)=f(1)=f(1+2)=2-3,問題解決.
解答:解:∵函數(shù)f(x)=
f(x+2),(x<2)
2-x
 ,
 (x≥2)
,
∴f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=f(1+2)=2-3=
1
8

故選A.
點評:本題考查分段函數(shù)的解析式的應用,關鍵在于正確理解與應用條件,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、若函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(2-x),且當x≠1時其導函數(shù)f′(x)滿足(x-1)f′(x)>0,若1<a<2,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域為R,且存在常數(shù)m>0,對任意x∈R,有|f(x)|≤m|x|,則稱f(x)為F函數(shù).給出下列函數(shù):
①f(x)=x2,②f(x)=sinx+cosx,③f(x)=
x
x2+x+1
,④f(x)是定義在R上的奇函數(shù),且滿足對一切實數(shù)x1,x2均有|f(x1)-f(x2)|≤2012|x1-x2|,⑤f(x)=x
1
2
,其中是F函數(shù)的有
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在非零實數(shù)h使得對于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),則稱f(x)為M上的“h階高調(diào)函數(shù)”.給出如下結論:
①若函數(shù)f(x)在R上單調(diào)遞增,則存在非零實數(shù)h使f(x)為R上的“h階高調(diào)函數(shù)”;
②若函數(shù)f(x)為R上的“h階高調(diào)函數(shù)”,則f(x)在R上單調(diào)遞增;
③若函數(shù)f(x)=x2為區(qū)間[-1,+∞)上的“h階高誣蔑財函數(shù)”,則h≥2;
④若函數(shù)f(x)在R上的奇函數(shù),且x≥0時,f(x)=|x-1|-1,則f(x)只能是R上的“4階高調(diào)函數(shù)”.
其中正確結論的序號為( 。

查看答案和解析>>

同步練習冊答案